1,702 research outputs found

    Average Weights and Power in Weighted Voting Games

    Get PDF
    We investigate a class of weighted voting games for which weights are randomly distributed over the standard probability simplex. We provide close-formed formulae for the expectation and density of the distribution of weight of the kk-th largest player under the uniform distribution. We analyze the average voting power of the kk-th largest player and its dependence on the quota, obtaining analytical and numerical results for small values of nn and a general theorem about the functional form of the relation between the average Penrose--Banzhaf power index and the quota for the uniform measure on the simplex. We also analyze the power of a collectivity to act (Coleman efficiency index) of random weighted voting games, obtaining analytical upper bounds therefor.Comment: 12 pages, 7 figure

    The Complexity of Power-Index Comparison

    Get PDF
    We study the complexity of the following problem: Given two weighted voting games G' and G'' that each contain a player p, in which of these games is p's power index value higher? We study this problem with respect to both the Shapley-Shubik power index [SS54] and the Banzhaf power index [Ban65,DS79]. Our main result is that for both of these power indices the problem is complete for probabilistic polynomial time (i.e., is PP-complete). We apply our results to partially resolve some recently proposed problems regarding the complexity of weighted voting games. We also study the complexity of the raw Shapley-Shubik power index. Deng and Papadimitriou [DP94] showed that the raw Shapley-Shubik power index is #P-metric-complete. We strengthen this by showing that the raw Shapley-Shubik power index is many-one complete for #P. And our strengthening cannot possibly be further improved to parsimonious completeness, since we observe that, in contrast with the raw Banzhaf power index, the raw Shapley-Shubik power index is not #P-parsimonious-complete.Comment: 12 page

    Manipulating the Quota in Weighted Voting Games

    No full text
    Weighted voting games provide a popular model of decision making in multiagent systems. Such games are described by a set of players, a list of players' weights, and a quota; a coalition of the players is said to be winning if the total weight of its members meets or exceeds the quota. The power of a player in such games is traditionally identified with her Shapley--Shubik index or her Banzhaf index, two classical power measures that reflect the player's marginal contributions under different coalition formation scenarios. In this paper, we investigate by how much the central authority can change a player's power, as measured by these indices, by modifying the quota. We provide tight upper and lower bounds on the changes in the individual player's power that can result from a change in quota. We also study how the choice of quota can affect the relative power of the players. From the algorithmic perspective, we provide an efficient algorithm for determining whether there is a value of the quota that makes a given player a {\em dummy}, i.e., reduces his power (as measured by both indices) to 0. On the other hand, we show that checking which of the two values of the quota makes this player more powerful is computationally hard, namely, complete for the complexity class PP, which is believed to be significantly more powerful than NP

    Selfish Bin Covering

    Get PDF
    In this paper, we address the selfish bin covering problem, which is greatly related both to the bin covering problem, and to the weighted majority game. What we mainly concern is how much the lack of coordination harms the social welfare. Besides the standard PoA and PoS, which are based on Nash equilibrium, we also take into account the strong Nash equilibrium, and several other new equilibria. For each equilibrium, the corresponding PoA and PoS are given, and the problems of computing an arbitrary equilibrium, as well as approximating the best one, are also considered.Comment: 16 page

    The complexity of power indices in voting games with incompatible players

    Get PDF
    We study the complexity of computing the Banzhaf index in weighted voting games with cooperation restricted by an incompatibility graph. With an existing algorithm as a starting point, we use concepts from complexity theory to show that, for some classes of incompatibility graphs, the problem can be solved efficiently, as long as the players have "small" weights. We also show that for some other class of graphs it is unlikely that we can find efficient algorithms to compute the Banzhaf index in the corresponding restricted game. Finally, we discuss the complexity of deciding whether the index of a player is non-zero

    On the complexity of problems on simple games

    Get PDF
    Simple games cover voting systems in which a single alternative, such as a bill or an amendment, is pitted against the status quo. A simple game or a yes–no voting system is a set of rules that specifies exactly which collections of “yea” votes yield passage of the issue at hand, each of these collections of “yea” voters forms a winning coalition. We are interested in performing a complexity analysis on problems defined on such families of games. This analysis as usual depends on the game representation used as input. We consider four natural explicit representations: winning, losing, minimal winning, and maximal losing. We first analyze the complexity of testing whether a game is simple and testing whether a game is weighted. We show that, for the four types of representations, both problems can be solved in polynomial time. Finally, we provide results on the complexity of testing whether a simple game or a weighted game is of a special type. We analyze strongness, properness, decisiveness and homogeneity, which are desirable properties to be fulfilled for a simple game. We finalize with some considerations on the possibility of representing a game in a more succinct representation showing a natural representation in which the recognition problem is hard.Preprin

    Complementary cooperation, minimal winning coalitions, and power indices

    Full text link
    We introduce a new simple game, which is referred to as the complementary weighted multiple majority game (C-WMMG for short). C-WMMG models a basic cooperation rule, the complementary cooperation rule, and can be taken as a sister model of the famous weighted majority game (WMG for short). In this paper, we concentrate on the two dimensional C-WMMG. An interesting property of this case is that there are at most n+1n+1 minimal winning coalitions (MWC for short), and they can be enumerated in time O(nlogn)O(n\log n), where nn is the number of players. This property guarantees that the two dimensional C-WMMG is more handleable than WMG. In particular, we prove that the main power indices, i.e. the Shapley-Shubik index, the Penrose-Banzhaf index, the Holler-Packel index, and the Deegan-Packel index, are all polynomially computable. To make a comparison with WMG, we know that it may have exponentially many MWCs, and none of the four power indices is polynomially computable (unless P=NP). Still for the two dimensional case, we show that local monotonicity holds for all of the four power indices. In WMG, this property is possessed by the Shapley-Shubik index and the Penrose-Banzhaf index, but not by the Holler-Packel index or the Deegan-Packel index. Since our model fits very well the cooperation and competition in team sports, we hope that it can be potentially applied in measuring the values of players in team sports, say help people give more objective ranking of NBA players and select MVPs, and consequently bring new insights into contest theory and the more general field of sports economics. It may also provide some interesting enlightenments into the design of non-additive voting mechanisms. Last but not least, the threshold version of C-WMMG is a generalization of WMG, and natural variants of it are closely related with the famous airport game and the stable marriage/roommates problem.Comment: 60 page
    corecore