55 research outputs found

    On Covering Segments with Unit Intervals

    Get PDF
    We study the problem of covering a set of segments on a line with the minimum number of unit-length intervals, where an interval covers a segment if at least one of the two endpoints of the segment falls in the unit interval. We also study several variants of this problem. We show that the restrictions of the aforementioned problems to the set of instances in which all the segments have the same length are NP-hard. This result implies several NP-hardness results in the literature for variants and generalizations of the problems under consideration. We then study the parameterized complexity of the aforementioned problems. We provide tight results for most of them by showing that they are fixed-parameter tractable for the restrictions in which all the segments have the same length, and are W[1]-complete otherwise

    On Covering Points with Conics and Strips in the Plane

    Get PDF
    Geometric covering problems have always been of focus in computer scientific research. The generic geometric covering problem asks to cover a set S of n objects with another set of objects whose cardinality is minimum, in a geometric setting. Many versions of geometric cover have been studied in detail, one of which is line cover: Given a set of points in the plane, find the minimum number of lines to cover them. In Euclidean space Rm, this problem is known as Hyperplane Cover, where lines are replaced by affine hyperplanes bounded by dimension d. Line cover is NP-hard, so is its hyperplane analogue. Our thesis focuses on few extensions of hyperplane cover and line cover. One of the techniques used to study NP-hard problems is Fixed Parameter Tractability (FPT), where, in addition to input size, a parameter k is provided for input instance. We ask to solve the problem with respect to k, such that the running time is a function in both n and k, strictly polynomial in n, while the exponential component is limited to k. In this thesis, we study FPT and parameterized complexity theory, the theory of classifying hard problems involving a parameter k. We focus on two new geometric covering problems: covering a set of points in the plane with conics (conic cover) and covering a set of points with strips or fat lines of given width in the plane (fat line cover). A conic is a non-degenerate curve of degree two in the plane. A fat line is defined as a strip of finite width w. In this dissertation, we focus on the parameterized versions of these two problems, where, we are asked to cover the set of points with k conics or k fat lines. We use the existing techniques of FPT algorithms, kernelization and approximation algorithms to study these problems. We do a comprehensive study of these problems, starting with NP-hardness results to studying their parameterized hardness in terms of parameter k. We show that conic cover is fixed parameter tractable, and give an algorithm of running time O∗ ((k/1.38)^4k), where, O∗ implies that the running time is some polynomial in input size. Utilizing special properties of a parabola, we are able to achieve a faster algorithm and show a running time of O∗ ((k/1.15)^3k). For fat line cover, first we establish its NP-hardness, then we explore algorithmic possibilities with respect to parameterized complexity theory. We show W [1]-hardness of fat line cover with respect to the number of fat lines, by showing a parameterized reduction from the problem of stabbing axis-parallel squares in the plane. A parameterized reduction is an algorithm which transforms an instance of one parameterized problem into an instance of another parameterized problem using a FPT-algorithm. In addition, we show that some restricted versions of fat line cover are also W [1]-hard. Further, in this thesis, we explore a restricted version of fat line cover, where the set of points are integer coordinates and allow only axis-parallel lines to cover them. We show that the problem is still NP-hard. We also show that this version is fixed parameter tractable having a kernel size of O (k^2) and give a FPT-algorithm with a running time of O∗ (3^k). Finally, we conclude our study on this problem by giving an approximation algorithm for this version having a constant approximation ratio 2

    The Complexity of Drawing Graphs on Few Lines and Few Planes

    Full text link
    It is well known that any graph admits a crossing-free straight-line drawing in R3\mathbb{R}^3 and that any planar graph admits the same even in R2\mathbb{R}^2. For a graph GG and d{2,3}d \in \{2,3\}, let ρd1(G)\rho^1_d(G) denote the minimum number of lines in Rd\mathbb{R}^d that together can cover all edges of a drawing of GG. For d=2d=2, GG must be planar. We investigate the complexity of computing these parameters and obtain the following hardness and algorithmic results. - For d{2,3}d\in\{2,3\}, we prove that deciding whether ρd1(G)k\rho^1_d(G)\le k for a given graph GG and integer kk is R{\exists\mathbb{R}}-complete. - Since NPR\mathrm{NP}\subseteq{\exists\mathbb{R}}, deciding ρd1(G)k\rho^1_d(G)\le k is NP-hard for d{2,3}d\in\{2,3\}. On the positive side, we show that the problem is fixed-parameter tractable with respect to kk. - Since RPSPACE{\exists\mathbb{R}}\subseteq\mathrm{PSPACE}, both ρ21(G)\rho^1_2(G) and ρ31(G)\rho^1_3(G) are computable in polynomial space. On the negative side, we show that drawings that are optimal with respect to ρ21\rho^1_2 or ρ31\rho^1_3 sometimes require irrational coordinates. - Let ρ32(G)\rho^2_3(G) be the minimum number of planes in R3\mathbb{R}^3 needed to cover a straight-line drawing of a graph GG. We prove that deciding whether ρ32(G)k\rho^2_3(G)\le k is NP-hard for any fixed k2k \ge 2. Hence, the problem is not fixed-parameter tractable with respect to kk unless P=NP\mathrm{P}=\mathrm{NP}

    Vertex and edge covers with clustering properties: complexity and algorithms

    Get PDF
    We consider the concepts of a t-total vertex cover and a t-total edge cover (t≥1), which generalise the notions of a vertex cover and an edge cover, respectively. A t-total vertex (respectively edge) cover of a connected graph G is a vertex (edge) cover S of G such that each connected component of the subgraph of G induced by S has at least t vertices (edges). These definitions are motivated by combining the concepts of clustering and covering in graphs. Moreover they yield a spectrum of parameters that essentially range from a vertex cover to a connected vertex cover (in the vertex case) and from an edge cover to a spanning tree (in the edge case). For various values of t, we present NP-completeness and approximability results (both upper and lower bounds) and FTP algorithms for problems concerned with finding the minimum size of a t-total vertex cover, t-total edge cover and connected vertex cover, in particular improving on a previous FTP algorithm for the latter problem

    Flip Distance Between Triangulations of a Simple Polygon is NP-Complete

    Full text link
    Let T be a triangulation of a simple polygon. A flip in T is the operation of removing one diagonal of T and adding a different one such that the resulting graph is again a triangulation. The flip distance between two triangulations is the smallest number of flips required to transform one triangulation into the other. For the special case of convex polygons, the problem of determining the shortest flip distance between two triangulations is equivalent to determining the rotation distance between two binary trees, a central problem which is still open after over 25 years of intensive study. We show that computing the flip distance between two triangulations of a simple polygon is NP-complete. This complements a recent result that shows APX-hardness of determining the flip distance between two triangulations of a planar point set.Comment: Accepted versio

    Grid Recognition: Classical and Parameterized Computational Perspectives

    Get PDF
    Grid graphs, and, more generally, k×rk\times r grid graphs, form one of the most basic classes of geometric graphs. Over the past few decades, a large body of works studied the (in)tractability of various computational problems on grid graphs, which often yield substantially faster algorithms than general graphs. Unfortunately, the recognition of a grid graph is particularly hard -- it was shown to be NP-hard even on trees of pathwidth 3 already in 1987. Yet, in this paper, we provide several positive results in this regard in the framework of parameterized complexity (additionally, we present new and complementary hardness results). Specifically, our contribution is threefold. First, we show that the problem is fixed-parameter tractable (FPT) parameterized by k+mcck+\mathsf {mcc} where mcc\mathsf{mcc} is the maximum size of a connected component of GG. This also implies that the problem is FPT parameterized by td+k\mathtt{td}+k where td\mathtt{td} is the treedepth of GG (to be compared with the hardness for pathwidth 2 where k=3k=3). Further, we derive as a corollary that strip packing is FPT with respect to the height of the strip plus the maximum of the dimensions of the packed rectangles, which was previously only known to be in XP. Second, we present a new parameterization, denoted aGa_G, relating graph distance to geometric distance, which may be of independent interest. We show that the problem is para-NP-hard parameterized by aGa_G, but FPT parameterized by aGa_G on trees, as well as FPT parameterized by k+aGk+a_G. Third, we show that the recognition of k×rk\times r grid graphs is NP-hard on graphs of pathwidth 2 where k=3k=3. Moreover, when kk and rr are unrestricted, we show that the problem is NP-hard on trees of pathwidth 2, but trivially solvable in polynomial time on graphs of pathwidth 1

    Approximation Complexity of Optimization Problems : Structural Foundations and Steiner Tree Problems

    Get PDF
    In this thesis we study the approximation complexity of the Steiner Tree Problem and related problems as well as foundations in structural complexity theory. The Steiner Tree Problem is one of the most fundamental problems in combinatorial optimization. It asks for a shortest connection of a given set of points in an edge-weighted graph. This problem and its numerous variants have applications ranging from electrical engineering, VLSI design and transportation networks to internet routing. It is closely connected to the famous Traveling Salesman Problem and serves as a benchmark problem for approximation algorithms. We give a survey on the Steiner tree Problem, obtaining lower bounds for approximability of the (1,2)-Steiner Tree Problem by combining hardness results of Berman and Karpinski with reduction methods of Bern and Plassmann. We present approximation algorithms for the Steiner Forest Problem in graphs and bounded hypergraphs, the Prize Collecting Steiner Tree Problem and related problems where prizes are given for pairs of terminals. These results are based on the Primal-Dual method and the Local Ratio framework of Bar-Yehuda. We study the Steiner Network Problem and obtain combinatorial approximation algorithms with reasonable running time for two special cases, namely the Uniform Uncapacitated Case and the Prize Collecting Uniform Uncapacitated Case. For the general case, Jain's algorithms obtains an approximation ratio of 2, based on the Ellipsoid Method. We obtain polynomial time approximation schemes for the Dense Prize Collecting Steiner Tree Problem, Dense k-Steiner Problem and the Dense Class Steiner Tree Problem based on the methods of Karpinski and Zelikovsky for approximating the Dense Steiner Tree Problem. Motivated by the question which parameters make the Steiner Tree problem hard to solve, we make an excurs into Fixed Parameter Complexity, focussing on structural aspects of the W-Hierarchy. We prove a Speedup Theorem for the classes FPT and SP and versions if Levin's Lower Bound Theorem for the class SP as well as for Randomized Space Complexity. Starting from the approximation schemes for the dense Steiner Tree problems, we deal with the efficiency of polynomial time approximation schemes in general. We separate the class EPTAS from PTAS under some reasonable complexity theoretic assumption. The same separation was achieved by Cesaty and Trevisan under some assumtion from Fixed Parameter Complexity. We construct an oracle under which our assumtion holds but that of Cesati and Trevisan does not, which implies that using relativizing proof techniques one cannot show that our assumption implies theirs

    Vertex Deletion Problems on Chordal Graphs

    Get PDF
    Containing many classic optimization problems, the family of vertex deletion problems has an important position in algorithm and complexity study. The celebrated result of Lewis and Yannakakis gives a complete dichotomy of their complexity. It however has nothing to say about the case when the input graph is also special. This paper initiates a systematic study of vertex deletion problems from one subclass of chordal graphs to another. We give polynomial-time algorithms or proofs of NP-completeness for most of the problems. In particular, we show that the vertex deletion problem from chordal graphs to interval graphs is NP-complete
    corecore