856 research outputs found

    NP-hardness of the sorting buffer problem on the uniform metric

    Get PDF
    AbstractAn instance of the sorting buffer problem (SBP) consists of a sequence of requests for service, each of which is specified by a point in a metric space, and a sorting buffer which can store up to a limited number of requests and rearrange them. To serve a request, the server needs to visit the point where serving a request p following the service to a request q requires the cost corresponding to the distance d(p,q) between p and q. The objective of SBP is to serve all input requests in a way that minimizes the total distance traveled by the server by reordering the input sequence. In this paper, we focus our attention to the uniform metric, i.e., the distance d(p,q)=1 if p≠q, d(p,q)=0 otherwise, and present the first NP-hardness proof for SBP on the uniform metric

    A Bicriteria Approximation for the Reordering Buffer Problem

    Full text link
    In the reordering buffer problem (RBP), a server is asked to process a sequence of requests lying in a metric space. To process a request the server must move to the corresponding point in the metric. The requests can be processed slightly out of order; in particular, the server has a buffer of capacity k which can store up to k requests as it reads in the sequence. The goal is to reorder the requests in such a manner that the buffer constraint is satisfied and the total travel cost of the server is minimized. The RBP arises in many applications that require scheduling with a limited buffer capacity, such as scheduling a disk arm in storage systems, switching colors in paint shops of a car manufacturing plant, and rendering 3D images in computer graphics. We study the offline version of RBP and develop bicriteria approximations. When the underlying metric is a tree, we obtain a solution of cost no more than 9OPT using a buffer of capacity 4k + 1 where OPT is the cost of an optimal solution with buffer capacity k. Constant factor approximations were known previously only for the uniform metric (Avigdor-Elgrabli et al., 2012). Via randomized tree embeddings, this implies an O(log n) approximation to cost and O(1) approximation to buffer size for general metrics. Previously the best known algorithm for arbitrary metrics by Englert et al. (2007) provided an O(log^2 k log n) approximation without violating the buffer constraint.Comment: 13 page

    Reordering Buffer Management with a Logarithmic Guarantee in General Metric Spaces

    Get PDF
    In the reordering buffer management problem a sequence of requests arrive online in a finite metric space, and have to be processed by a single server. This server is equipped with a request buffer of size k and can decide at each point in time, which request from its buffer to serve next. Servicing of a request is simply done by moving the server to the location of the request. The goal is to process all requests while minimizing the total distance that the server is traveling inside the metric space. In this paper we present a deterministic algorithm for the reordering buffer management problem that achieves a competitive ratio of O(log Delta + min {log n,log k}) in a finite metric space of n points and aspect ratio Delta. This is the first algorithm that works for general metric spaces and has just a logarithmic dependency on the relevant parameters. The guarantee is memory-robust, i.e., the competitive ratio decreases only slightly when the buffer-size of the optimum is increased to h=(1+epsilon)k. For memory robust guarantees our bounds are close to optimal

    Efficient bulk-loading methods for temporal and multidimensional index structures

    Get PDF
    Nahezu alle naturwissenschaftlichen Bereiche profitieren von neuesten Analyse- und Verarbeitungsmethoden für große Datenmengen. Diese Verfahren setzten eine effiziente Verarbeitung von geo- und zeitbezogenen Daten voraus, da die Zeit und die Position wichtige Attribute vieler Daten sind. Die effiziente Anfrageverarbeitung wird insbesondere durch den Einsatz von Indexstrukturen ermöglicht. Im Fokus dieser Arbeit liegen zwei Indexstrukturen: Multiversion B-Baum (MVBT) und R-Baum. Die erste Struktur wird für die Verwaltung von zeitbehafteten Daten, die zweite für die Indexierung von mehrdimensionalen Rechteckdaten eingesetzt. Ständig- und schnellwachsendes Datenvolumen stellt eine große Herausforderung an die Informatik dar. Der Aufbau und das Aktualisieren von Indexen mit herkömmlichen Methoden (Datensatz für Datensatz) ist nicht mehr effizient. Um zeitnahe und kosteneffiziente Datenverarbeitung zu ermöglichen, werden Verfahren zum schnellen Laden von Indexstrukturen dringend benötigt. Im ersten Teil der Arbeit widmen wir uns der Frage, ob es ein Verfahren für das Laden von MVBT existiert, das die gleiche I/O-Komplexität wie das externe Sortieren besitz. Bis jetzt blieb diese Frage unbeantwortet. In dieser Arbeit haben wir eine neue Kostruktionsmethode entwickelt und haben gezeigt, dass diese gleiche Zeitkomplexität wie das externe Sortieren besitzt. Dabei haben wir zwei algorithmische Techniken eingesetzt: Gewichts-Balancierung und Puffer-Bäume. Unsere Experimenten zeigen, dass das Resultat nicht nur theoretischer Bedeutung ist. Im zweiten Teil der Arbeit beschäftigen wir uns mit der Frage, ob und wie statistische Informationen über Geo-Anfragen ausgenutzt werden können, um die Anfrageperformanz von R-Bäumen zu verbessern. Unsere neue Methode verwendet Informationen wie Seitenverhältnis und Seitenlängen eines repräsentativen Anfragerechtecks, um einen guten R-Baum bezüglich eines häufig eingesetzten Kostenmodells aufzubauen. Falls diese Informationen nicht verfügbar sind, optimieren wir R-Bäume bezüglich der Summe der Volumina von minimal umgebenden Rechtecken der Blattknoten. Da das Problem des Aufbaus von optimalen R-Bäumen bezüglich dieses Kostenmaßes NP-hart ist, führen wir zunächst das Problem auf ein eindimensionales Partitionierungsproblem zurück, indem wir die Daten bezüglich optimierte raumfüllende Kurven sortieren. Dann lösen wir dieses Problem durch Einsatz vom dynamischen Programmieren. Die I/O-Komplexität des Verfahrens ist gleich der von externem Sortieren, da die I/O-Laufzeit der Methode durch die Laufzeit des Sortierens dominiert wird. Im letzten Teil der Arbeit haben wir die entwickelten Partitionierungsvefahren für den Aufbau von Geo-Histogrammen eingesetzt, da diese ähnlich zu R-Bäumen eine disjunkte Partitionierung des Raums erzeugen. Ergebnisse von intensiven Experimenten zeigen, dass sich unter Verwendung von neuen Partitionierungstechniken sowohl R-Bäume mit besserer Anfrageperformanz als auch Geo-Histogrammen mit besserer Schätzqualität im Vergleich zu Konkurrenzverfahren generieren lassen

    Finding Optimal Diverse Feature Sets with Alternative Feature Selection

    Get PDF
    Feature selection is popular for obtaining small, interpretable, yet highly accurate prediction models. Conventional feature-selection methods typically yield one feature set only, which might not suffice in some scenarios. For example, users might be interested in finding alternative feature sets with similar prediction quality, offering different explanations of the data. In this article, we introduce alternative feature selection and formalize it as an optimization problem. In particular, we define alternatives via constraints and enable users to control the number and dissimilarity of alternatives. Next, we analyze the complexity of this optimization problem and show NP-hardness. Further, we discuss how to integrate conventional feature-selection methods as objectives. Finally, we evaluate alternative feature selection with 30 classification datasets. We observe that alternative feature sets may indeed have high prediction quality, and we analyze several factors influencing this outcome

    Finding Optimal Diverse Feature Sets with Alternative Feature Selection

    Full text link
    Feature selection is popular for obtaining small, interpretable, yet highly accurate prediction models. Conventional feature-selection methods typically yield one feature set only, which might not suffice in some scenarios. For example, users might be interested in finding alternative feature sets with similar prediction quality, offering different explanations of the data. In this article, we introduce alternative feature selection and formalize it as an optimization problem. In particular, we define alternatives via constraints and enable users to control the number and dissimilarity of alternatives. Next, we analyze the complexity of this optimization problem and show NP-hardness. Further, we discuss how to integrate conventional feature-selection methods as objectives. Finally, we evaluate alternative feature selection with 30 classification datasets. We observe that alternative feature sets may indeed have high prediction quality, and we analyze several factors influencing this outcome

    27th Annual European Symposium on Algorithms: ESA 2019, September 9-11, 2019, Munich/Garching, Germany

    Get PDF
    • …
    corecore