223 research outputs found

    On Upward Drawings of Trees on a Given Grid

    Full text link
    Computing a minimum-area planar straight-line drawing of a graph is known to be NP-hard for planar graphs, even when restricted to outerplanar graphs. However, the complexity question is open for trees. Only a few hardness results are known for straight-line drawings of trees under various restrictions such as edge length or slope constraints. On the other hand, there exist polynomial-time algorithms for computing minimum-width (resp., minimum-height) upward drawings of trees, where the height (resp., width) is unbounded. In this paper we take a major step in understanding the complexity of the area minimization problem for strictly-upward drawings of trees, which is one of the most common styles for drawing rooted trees. We prove that given a rooted tree TT and a WĂ—HW\times H grid, it is NP-hard to decide whether TT admits a strictly-upward (unordered) drawing in the given grid.Comment: Appears in the Proceedings of the 25th International Symposium on Graph Drawing and Network Visualization (GD 2017

    A theory of flow network typings and its optimization problems

    Full text link
    Many large-scale and safety critical systems can be modeled as flow networks. Traditional approaches for the analysis of flow networks are whole-system approaches in that they require prior knowledge of the entire network before an analysis is undertaken, which can quickly become intractable as the size of network increases. In this thesis we study an alternative approach to the analysis of flow networks, which is modular, incremental and order-oblivious. The formal mechanism for realizing this compositional approach is an appropriately defined theory of network typings. Typings are formalized differently depending on how networks are specified and which of their properties is being verified. We illustrate this approach by considering a particular family of flow networks, called additive flow networks. In additive flow networks, every edge is assigned a constant gain/loss factor which is activated provided a non-zero amount of flow enters that edge. We show that the analysis of additive flow networks, more specifically the max-flow problem, is NP-hard, even when the underlying graph is planar. The theory of network typings gives rise to different forms of graph decomposition problems. We focus on one problem, which we call the graph reassembling problem. Given an abstraction of a flow network as a graph G = (V,E), one possible definition of this problem is specified in two steps: (1) We cut every edge of G into two halves to obtain a collection of |V| one-vertex components, and (2) we splice the two halves of all the edges, one edge at a time, in some order that minimizes the complexity of constructing a typing for G, starting from the typings of its one-vertex components. One optimization is minimizing “maximum” edge-boundary degree of components encountered during the reassembling of G (denoted as α measure). Another is to minimize the “sum” of all edge-boundary degrees encountered during this process (denoted by β measure). Finally, we study different variations of graph reassembling (with respect to minimizing α or β) and their relation with problems such as Linear Arrangement, Routing Tree Embedding, and Tree Layout

    On the Linear MIM-width of Trees

    Get PDF
    Linear MIM-width, and its generalization MIM-width, is a graph width parameter that has become noted for having bounded value on several important graph classes, e.g. interval graphs and permutation graphs. The linear MIM-width of a graph G measures a min-max relation on all maximum induced matchings in bipartite graphs given by a linear layout of the vertices in G, over all possible linear layouts. In this thesis we give an overlook of some of the research that has been done on this parameter, and provide a new result, computing the linear MIM-width of trees in n log n time.MasteroppgĂĄve i informatikkINF399MAMN-PROGMAMN-IN

    On the treewidth of triangulated 3-manifolds

    Get PDF
    In graph theory, as well as in 3-manifold topology, there exist several width-type parameters to describe how "simple" or "thin" a given graph or 3-manifold is. These parameters, such as pathwidth or treewidth for graphs, or the concept of thin position for 3-manifolds, play an important role when studying algorithmic problems; in particular, there is a variety of problems in computational 3-manifold topology - some of them known to be computationally hard in general - that become solvable in polynomial time as soon as the dual graph of the input triangulation has bounded treewidth. In view of these algorithmic results, it is natural to ask whether every 3-manifold admits a triangulation of bounded treewidth. We show that this is not the case, i.e., that there exists an infinite family of closed 3-manifolds not admitting triangulations of bounded pathwidth or treewidth (the latter implies the former, but we present two separate proofs). We derive these results from work of Agol, of Scharlemann and Thompson, and of Scharlemann, Schultens and Saito by exhibiting explicit connections between the topology of a 3-manifold M on the one hand and width-type parameters of the dual graphs of triangulations of M on the other hand, answering a question that had been raised repeatedly by researchers in computational 3-manifold topology. In particular, we show that if a closed, orientable, irreducible, non-Haken 3-manifold M has a triangulation of treewidth (resp. pathwidth) k then the Heegaard genus of M is at most 18(k+1) (resp. 4(3k+1))
    • …
    corecore