140,067 research outputs found

    Characterizing the Existence of Optimal Proof Systems and Complete Sets for Promise Classes.

    Get PDF
    In this paper we investigate the following two questions: Q1: Do there exist optimal proof systems for a given language L? Q2: Do there exist complete problems for a given promise class C? For concrete languages L (such as TAUT or SAT) and concrete promise classes C (such as NP∩coNP, UP, BPP, disjoint NP-pairs etc.), these ques-tions have been intensively studied during the last years, and a number of characterizations have been obtained. Here we provide new character-izations for Q1 and Q2 that apply to almost all promise classes C and languages L, thus creating a unifying framework for the study of these practically relevant questions. While questions Q1 and Q2 are left open by our results, we show that they receive affirmative answers when a small amount on advice is avail-able in the underlying machine model. This continues a recent line of research on proof systems with advice started by Cook and Kraj́ıček [6]

    Different Approaches to Proof Systems

    Get PDF
    The classical approach to proof complexity perceives proof systems as deterministic, uniform, surjective, polynomial-time computable functions that map strings to (propositional) tautologies. This approach has been intensively studied since the late 70’s and a lot of progress has been made. During the last years research was started investigating alternative notions of proof systems. There are interesting results stemming from dropping the uniformity requirement, allowing oracle access, using quantum computations, or employing probabilism. These lead to different notions of proof systems for which we survey recent results in this paper

    A Tight Karp-Lipton Collapse Result in Bounded Arithmetic

    Get PDF
    Cook and Krajíček [9] have obtained the following Karp-Lipton result in bounded arithmetic: if the theory proves , then collapses to , and this collapse is provable in . Here we show the converse implication, thus answering an open question from [9]. We obtain this result by formalizing in a hard/easy argument of Buhrman, Chang, and Fortnow [3]. In addition, we continue the investigation of propositional proof systems using advice, initiated by Cook and Krajíček [9]. In particular, we obtain several optimal and even p-optimal proof systems using advice. We further show that these p-optimal systems are equivalent to natural extensions of Frege systems

    Oracles Are Subtle But Not Malicious

    Full text link
    Theoretical computer scientists have been debating the role of oracles since the 1970's. This paper illustrates both that oracles can give us nontrivial insights about the barrier problems in circuit complexity, and that they need not prevent us from trying to solve those problems. First, we give an oracle relative to which PP has linear-sized circuits, by proving a new lower bound for perceptrons and low- degree threshold polynomials. This oracle settles a longstanding open question, and generalizes earlier results due to Beigel and to Buhrman, Fortnow, and Thierauf. More importantly, it implies the first nonrelativizing separation of "traditional" complexity classes, as opposed to interactive proof classes such as MIP and MA-EXP. For Vinodchandran showed, by a nonrelativizing argument, that PP does not have circuits of size n^k for any fixed k. We present an alternative proof of this fact, which shows that PP does not even have quantum circuits of size n^k with quantum advice. To our knowledge, this is the first nontrivial lower bound on quantum circuit size. Second, we study a beautiful algorithm of Bshouty et al. for learning Boolean circuits in ZPP^NP. We show that the NP queries in this algorithm cannot be parallelized by any relativizing technique, by giving an oracle relative to which ZPP^||NP and even BPP^||NP have linear-size circuits. On the other hand, we also show that the NP queries could be parallelized if P=NP. Thus, classes such as ZPP^||NP inhabit a "twilight zone," where we need to distinguish between relativizing and black-box techniques. Our results on this subject have implications for computational learning theory as well as for the circuit minimization problem.Comment: 20 pages, 1 figur

    Does Advice Help to Prove Propositional Tautologies?

    Get PDF
    One of the starting points of propositional proof complexity is the seminal paper by Cook and Reckhow [6], where they defined propositional proof systems as poly-time computable functions which have all propositional tautologies as their range. Motivated by provability consequences in bounded arithmetic, Cook and Krajíček [5] have recently started the investigation of proof systems which are computed by poly-time functions using advice. While this yields a more powerful model, it is also less directly applicable in practice. In this note we investigate the question whether the usage of advice in propositional proof systems can be simplified or even eliminated. While in principle, the advice can be very complex, we show that proof systems with logarithmic advice are also computable in poly-time with access to a sparse NP-oracle. In addition, we show that if advice is ”not very helpful” for proving tautologies, then there exists an optimal propositional proof system without advice. In our main result, we prove that advice can be transferred from the proof to the formula, leading to an easier computational model. We obtain this result by employing a recent technique by Buhrman and Hitchcock [4]
    corecore