229,065 research outputs found

    Nested quantum search and NP-complete problems

    Full text link
    A quantum algorithm is known that solves an unstructured search problem in a number of iterations of order d\sqrt{d}, where dd is the dimension of the search space, whereas any classical algorithm necessarily scales as O(d)O(d). It is shown here that an improved quantum search algorithm can be devised that exploits the structure of a tree search problem by nesting this standard search algorithm. The number of iterations required to find the solution of an average instance of a constraint satisfaction problem scales as dα\sqrt{d^\alpha}, with a constant α<1\alpha<1 depending on the nesting depth and the problem considered. When applying a single nesting level to a problem with constraints of size 2 such as the graph coloring problem, this constant α\alpha is estimated to be around 0.62 for average instances of maximum difficulty. This corresponds to a square-root speedup over a classical nested search algorithm, of which our presented algorithm is the quantum counterpart.Comment: 18 pages RevTeX, 3 Postscript figure

    nested PLS

    Full text link
    In this note we will introduce a class of search problems, called nested Polynomial Local Search (nPLS) problems, and show that definable NP search problems, i.e., Σ1b\Sigma^b_1-definable functions in T22T^2_2 are characterized in terms of the nested PLS

    The Complexity of Finding Reset Words in Finite Automata

    Get PDF
    We study several problems related to finding reset words in deterministic finite automata. In particular, we establish that the problem of deciding whether a shortest reset word has length k is complete for the complexity class DP. This result answers a question posed by Volkov. For the search problems of finding a shortest reset word and the length of a shortest reset word, we establish membership in the complexity classes FP^NP and FP^NP[log], respectively. Moreover, we show that both these problems are hard for FP^NP[log]. Finally, we observe that computing a reset word of a given length is FNP-complete.Comment: 16 pages, revised versio

    A fast, effective local search for scheduling independent jobs in heterogeneous computing environments

    Get PDF
    The efficient scheduling of independent computational jobs in a heterogeneous computing (HC) environment is an important problem in domains such as grid computing. Finding optimal schedules for such an environment is (in general) an NP-hard problem, and so heuristic approaches must be used. Work with other NP-hard problems has shown that solutions found by heuristic algorithms can often be improved by applying local search procedures to the solution found. This paper describes a simple but effective local search procedure for scheduling independent jobs in HC environments which, when combined with fast construction heuristics, can find shorter schedules on benchmark problems than other solution techniques found in the literature, and in significantly less time
    • …
    corecore