232 research outputs found

    Multiple Access in Aerial Networks: From Orthogonal and Non-Orthogonal to Rate-Splitting

    Get PDF
    Recently, interest on the utilization of unmanned aerial vehicles (UAVs) has aroused. Specifically, UAVs can be used in cellular networks as aerial users for delivery, surveillance, rescue search, or as an aerial base station (aBS) for communication with ground users in remote uncovered areas or in dense environments requiring prompt high capacity. Aiming to satisfy the high requirements of wireless aerial networks, several multiple access techniques have been investigated. In particular, space-division multiple access(SDMA) and power-domain non-orthogonal multiple access (NOMA) present promising multiplexing gains for aerial downlink and uplink. Nevertheless, these gains are limited as they depend on the conditions of the environment. Hence, a generalized scheme has been recently proposed, called rate-splitting multiple access (RSMA), which is capable of achieving better spectral efficiency gains compared to SDMA and NOMA. In this paper, we present a comprehensive survey of key multiple access technologies adopted for aerial networks, where aBSs are deployed to serve ground users. Since there have been only sporadic results reported on the use of RSMA in aerial systems, we aim to extend the discussion on this topic by modelling and analyzing the weighted sum-rate performance of a two-user downlink network served by an RSMA-based aBS. Finally, related open issues and future research directions are exposed.Comment: 16 pages, 6 figures, submitted to IEEE Journa

    On the Non-Orthogonal Layered Broadcast Codes in Cooperative Wireless Networks

    Get PDF
    A multi-fold increase in spectral eļ¬ƒciency and throughput are envisioned in the ļ¬fth generation of cellular networks to meet the requirements of International Telecommunication Union (ITU) IMT-2020 on massive connectivity and tremendous data traļ¬ƒc. This is achieved by evolution in three aspects of current networks. The ļ¬rst aspect is shrinking the cell sizes and deploying dense picocells and femtocells to boost the spectral reuse. The second is to allocate more spectrum resources including millimeter-wave bands. The third is deploying highly eļ¬ƒcient communications and multiple access techniques. Non-orthogonal multiple access (NOMA) is a promising communication technique that complements the current commercial spectrum access approach to boost the spectral eļ¬ƒciency, where different data streams/usersā€™ data share the same time, frequency and code resource blocks (sub-bands) via superimposition with each other. The receivers decode their own messages by deploying the successive interference cancellation (SIC) decoding rule. It is known that the NOMA coding is superior to conventional orthogonal multiple access (OMA) coding, where the resources are split among the users in either time or frequency domain. The NOMA based coding has been incorporated into other coding techniques including multi-input multi-output (MIMO), orthogonal frequency division multiplexing (OFDM), cognitive radio and cooperative techniques. In cooperative NOMA codes, either dedicated relay stations or stronger users with better channel conditions, act as relay to leverage the spatial diversity and to boost the performance of the other users. The advantage of spatial diversity gain in relay-based NOMA codes, is deployed to extend the coverage area of the network, to mitigate the fading eļ¬€ect of multipath channel and to increase the system throughput, hence improving the system eļ¬ƒciency. In this dissertation we consider the multimedia content delivery and machine type communications over 5G networks, where scalable content and low complexity encoders is of interest. We propose cross-layer design for transmission of successive reļ¬nement (SR) source code interplayed with non-orthogonal layered broadcast code for deployment in several cooperative network architectures. Firstly, we consider a multi-relay coding scheme where a source node is assisted by a half-duplex multi-relay non-orthogonal amplify-forward (NAF) network to communicate with a destination node. Assuming the channel state information (CSI) is not available at the source node, the achievable layered diversity multiplexing tradeoļ¬€ (DMT) curve is derived. Then, by taking distortion exponent (DE) as the ļ¬gure of merit, several achievable lower bounds are proved, and the optimal expected distortion performance under high signal to noise ratio (SNR) approximation is explicitly obtained. It is shown that the proposed coding can achieve the multi-input single-output (MISO) upper bound under certain regions of bandwidth ratios, by which the optimal performance in these regions can be explicitly characterized. Further the non-orthogonal layered coding scheme is extended to a multi-hop MIMO decode-forward (DF) relay network where a set of DE lower bounds is derived. Secondly, we propose a layered cooperative multi-user scheme based on non-orthogonal amplify-forward (NAF) relaying and non-orthogonal multiple access (NOMA) codes, aiming to achieve multi-user uplink transmissions with low complexity and low signaling overhead, particularly applicable to the machine type communications (MTC) and internet of things (IoT) systems. By assuming no CSI available at the transmitting nodes, the proposed layered codes make the transmission rate of each user adaptive to the channel realization. We derive the close-form analytical results on outage probability and the DMT curve of the proposed layered NAF codes in the asymptotic regime of high SNR, and optimize the end-to-end performance in terms of the exponential decay rate of expected distortion. Thirdly, we consider a single relay network and study the non-orthogonal layered scheme in the general SNR regime. A layered relaying scheme based on compress-forward (CF) is introduced, where optimization of end to end performance in terms of expected distortion is conducted to jointly determine network parameters. We further derive the explicit analytical optimal solution with two layers in the absence of channel knowledge. Finally, we consider the problem of multicast of multi-resolution layered messages over downlink of a cellular system with the assumption of CSI is not available at the base station (BS). Without loss generality, spatially random users are divided into two groups, where the near group users with better channel conditions decode for both layers, while the users in the second group decode for base layer only. Once the BS launches a multicast message, the ļ¬rst group users who successfully decoded the message, deploy a distributed cooperating scheme to assist the transmission to the other users. The cooperative scheme is naive but we will prove it can eļ¬€ectively enhance the network capacity. Closed form outage probability is explicitly derived for the two groups of users. Further it is shown that diversity order equal to the number of users in the near group is achievable, hence the coding gain of the proposed distributed scheme fully compensate the lack of CSI at the BS in terms of diversity order

    Two-Layered Superposition of Broadcast/Multicast and Unicast Signals in Multiuser OFDMA Systems

    Full text link
    We study optimal delivery strategies of one common and KK independent messages from a source to multiple users in wireless environments. In particular, two-layered superposition of broadcast/multicast and unicast signals is considered in a downlink multiuser OFDMA system. In the literature and industry, the two-layer superposition is often considered as a pragmatic approach to make a compromise between the simple but suboptimal orthogonal multiplexing (OM) and the optimal but complex fully-layered non-orthogonal multiplexing. In this work, we show that only two-layers are necessary to achieve the maximum sum-rate when the common message has higher priority than the KK individual unicast messages, and OM cannot be sum-rate optimal in general. We develop an algorithm that finds the optimal power allocation over the two-layers and across the OFDMA radio resources in static channels and a class of fading channels. Two main use-cases are considered: i) Multicast and unicast multiplexing when KK users with uplink capabilities request both common and independent messages, and ii) broadcast and unicast multiplexing when the common message targets receive-only devices and KK users with uplink capabilities additionally request independent messages. Finally, we develop a transceiver design for broadcast/multicast and unicast superposition transmission based on LTE-A-Pro physical layer and show with numerical evaluations in mobile environments with multipath propagation that the capacity improvements can be translated into significant practical performance gains compared to the orthogonal schemes in the 3GPP specifications. We also analyze the impact of real channel estimation and show that significant gains in terms of spectral efficiency or coverage area are still available even with estimation errors and imperfect interference cancellation for the two-layered superposition system

    Recent Advances in Cellular D2D Communications

    Get PDF
    Device-to-device (D2D) communications have attracted a great deal of attention from researchers in recent years. It is a promising technique for offloading local traffic from cellular base stations by allowing local devices, in physical proximity, to communicate directly with each other. Furthermore, through relaying, D2D is also a promising approach to enhancing service coverage at cell edges or in black spots. However, there are many challenges to realizing the full benefits of D2D. For one, minimizing the interference between legacy cellular and D2D users operating in underlay mode is still an active research issue. With the 5th generation (5G) communication systems expected to be the main data carrier for the Internet-of-Things (IoT) paradigm, the potential role of D2D and its scalability to support massive IoT devices and their machine-centric (as opposed to human-centric) communications need to be investigated. New challenges have also arisen from new enabling technologies for D2D communications, such as non-orthogonal multiple access (NOMA) and blockchain technologies, which call for new solutions to be proposed. This edited book presents a collection of ten chapters, including one review and nine original research works on addressing many of the aforementioned challenges and beyond

    Rate-Splitting Multiple Access for 6G Networks: Ten Promising Scenarios and Applications

    Full text link
    In the upcoming 6G era, multiple access (MA) will play an essential role in achieving high throughput performances required in a wide range of wireless applications. Since MA and interference management are closely related issues, the conventional MA techniques are limited in that they cannot provide near-optimal performance in universal interference regimes. Recently, rate-splitting multiple access (RSMA) has been gaining much attention. RSMA splits an individual message into two parts: a common part, decodable by every user, and a private part, decodable only by the intended user. Each user first decodes the common message and then decodes its private message by applying successive interference cancellation (SIC). By doing so, RSMA not only embraces the existing MA techniques as special cases but also provides significant performance gains by efficiently mitigating inter-user interference in a broad range of interference regimes. In this article, we first present the theoretical foundation of RSMA. Subsequently, we put forth four key benefits of RSMA: spectral efficiency, robustness, scalability, and flexibility. Upon this, we describe how RSMA can enable ten promising scenarios and applications along with future research directions to pave the way for 6G.Comment: 17 pages, 6 figures, submitted to IEEE Network Magazin

    NOMA Assisted Wireless Caching: Strategies and Performance Analysis

    Full text link
    Conventional wireless caching assumes that content can be pushed to local caching infrastructure during off-peak hours in an error-free manner; however, this assumption is not applicable if local caches need to be frequently updated via wireless transmission. This paper investigates a new approach to wireless caching for the case when cache content has to be updated during on-peak hours. Two non-orthogonal multiple access (NOMA) assisted caching strategies are developed, namely the push-then-deliver strategy and the push-and-deliver strategy. In the push-then-deliver strategy, the NOMA principle is applied to push more content files to the content servers during a short time interval reserved for content pushing in on-peak hours and to provide more connectivity for content delivery, compared to the conventional orthogonal multiple access (OMA) strategy. The push-and-deliver strategy is motivated by the fact that some users' requests cannot be accommodated locally and the base station has to serve them directly. These events during the content delivery phase are exploited as opportunities for content pushing, which further facilitates the frequent update of the files cached at the content servers. It is also shown that this strategy can be straightforwardly extended to device-to-device caching, and various analytical results are developed to illustrate the superiority of the proposed caching strategies compared to OMA based schemes
    • ā€¦
    corecore