332 research outputs found

    Impact-Oriented Contextual Scholar Profiling using Self-Citation Graphs

    Full text link
    Quantitatively profiling a scholar's scientific impact is important to modern research society. Current practices with bibliometric indicators (e.g., h-index), lists, and networks perform well at scholar ranking, but do not provide structured context for scholar-centric, analytical tasks such as profile reasoning and understanding. This work presents GeneticFlow (GF), a suite of novel graph-based scholar profiles that fulfill three essential requirements: structured-context, scholar-centric, and evolution-rich. We propose a framework to compute GF over large-scale academic data sources with millions of scholars. The framework encompasses a new unsupervised advisor-advisee detection algorithm, a well-engineered citation type classifier using interpretable features, and a fine-tuned graph neural network (GNN) model. Evaluations are conducted on the real-world task of scientific award inference. Experiment outcomes show that the F1 score of best GF profile significantly outperforms alternative methods of impact indicators and bibliometric networks in all the 6 computer science fields considered. Moreover, the core GF profiles, with 63.6%-66.5% nodes and 12.5%-29.9% edges of the full profile, still significantly outrun existing methods in 5 out of 6 fields studied. Visualization of GF profiling result also reveals human explainable patterns for high-impact scholars

    A decade of Semantic Web research through the lenses of a mixed methods approach

    Get PDF
    The identification of research topics and trends is an important scientometric activity, as it can help guide the direction of future research. In the Semantic Web area, initially topic and trend detection was primarily performed through qualitative, top-down style approaches, that rely on expert knowledge. More recently, data-driven, bottom-up approaches have been proposed that offer a quantitative analysis of the evolution of a research domain. In this paper, we aim to provide a broader and more complete picture of Semantic Web topics and trends by adopting a mixed methods methodology, which allows for the combined use of both qualitative and quantitative approaches. Concretely, we build on a qualitative analysis of the main seminal papers, which adopt a top-down approach, and on quantitative results derived with three bottom-up data-driven approaches (Rexplore, Saffron, PoolParty), on a corpus of Semantic Web papers published between 2006 and 2015. In this process, we both use the latter for “fact-checking” on the former and also to derive key findings in relation to the strengths and weaknesses of top-down and bottom up approaches to research topic identification. Although we provide a detailed study on the past decade of Semantic Web research, the findings and the methodology are relevant not only for our community but beyond the area of the Semantic Web to other research fields as well

    A hybrid similarity measure method for patent portfolio analysis

    Full text link
    © 2016 Elsevier Ltd Similarity measures are fundamental tools for identifying relationships within or across patent portfolios. Many bibliometric indicators are used to determine similarity measures; for example, bibliographic coupling, citation and co-citation, and co-word distribution. This paper aims to construct a hybrid similarity measure method based on multiple indicators to analyze patent portfolios. Two models are proposed: categorical similarity and semantic similarity. The categorical similarity model emphasizes international patent classifications (IPCs), while the semantic similarity model emphasizes textual elements. We introduce fuzzy set routines to translate the rough technical (sub-) categories of IPCs into defined numeric values, and we calculate the categorical similarities between patent portfolios using membership grade vectors. In parallel, we identify and highlight core terms in a 3-level tree structure and compute the semantic similarities by comparing the tree-based structures. A weighting model is designed to consider: 1) the bias that exists between the categorical and semantic similarities, and 2) the weighting or integrating strategy for a hybrid method. A case study to measure the technological similarities between selected firms in China's medical device industry is used to demonstrate the reliability our method, and the results indicate the practical meaning of our method in a broad range of informetric applications

    CiteTracked: A Longitudinal Dataset of Peer Reviews and Citations

    Get PDF
    Scientific dissemination is of central importance for the scientific process. This paper presents CiteTracked, a dataset of peer reviews and citation statistics covering scientific papers from the machine learning community and spanning six years. We describe and analyze the data collection of over 3,000 published papers, their peer review texts and citation counts, and depict possible usage directions. The dataset aims at fertilizing novel interdisciplinary work between fields such as scientometrics, information retrieval, computational linguistics and natural language processing to study the scientific publishing process
    • …
    corecore