215 research outputs found

    FMCW Signals for Radar Imaging and Channel Sounding

    Get PDF
    A linear / stepped frequency modulated continuous wave (FMCW) signal has for a long time been used in radar and channel sounding. A novel FMCW waveform known as “Gated FMCW” signal is proposed in this thesis for the suppression of strong undesired signals in microwave radar applications, such as: through-the-wall, ground penetrating, and medical imaging radar. In these applications the crosstalk signal between antennas and the reflections form the early interface (wall, ground surface, or skin respectively) are much stronger in magnitude compared to the backscattered signal from the target. Consequently, if not suppressed they overshadow the target’s return making detection a difficult task. Moreover, these strong unwanted reflections limit the radar’s dynamic range and might saturate or block the receiver causing the reflection from actual targets (especially targets with low radar cross section) to appear as noise. The effectiveness of the proposed waveform as a suppression technique was investigated in various radar scenarios, through numerical simulations and experiments. Comparisons of the radar images obtained for the radar system operating with the standard linear FMCW signal and with the proposed Gated FMCW waveform are also made. In addition to the radar work the application of FMCW signals to radio propagation measurements and channel characterisation in the 60 GHz and 2-6 GHz frequency bands in indoor and outdoor environments is described. The data are used to predict the bit error rate performance of the in-house built measurement based channel simulator and the results are compared with the theoretical multipath channel simulator available in Matlab

    Performance analysis of ultra wide band indoor channel

    Get PDF
    This thesis report is submitted in partial fulfillment of the requirements for the degree of Bachelor of Science in Computer Science and Engineering, 2008.Cataloged from PDF version of thesis report.Includes bibliographical references (page 41).Research on wireless communication system has been pursued for many years, but there is a renewed interest in ultra-wideband (UWB) technology for communication within short range, because of its huge bandwidth and low radiated power level. This emerging technology provides extremely high data rate in short ranges but in more secured approach. In order to build systems that realize all the potential of UWB, it is first required to understand UWB propagation and the channel properties arise from the propagation. In this research, the properties of UWB channel for indoor industrial environment was evaluated. A few indoor channel models have been studied so far for different environments but not for indoor industrial environment and various data rates are obtained according to wireless channel environments. Therefore, an accurate channel model is required to determine the maximum achievable data rate. In this thesis, we have proposed a channel model for indoor industrial environment considering the scattering coefficient along with the other multipath gain coefficient. This thesis addresses scattering effect while modeling UWB channel. Here, the performance of UWB channel model is analyzed following the parameters, such as power delay profile and the temporal dispersion properties which are also investigated in this paper.Kazi Afrina YasmeenA. K. M. WahiduzzamanMD. Ahamed ImtiazB. Computer Science and Engineerin

    Improving Accuracy in Ultra-Wideband Indoor Position Tracking through Noise Modeling and Augmentation

    Get PDF
    The goal of this research is to improve the precision in tracking of an ultra-wideband (UWB) based Local Positioning System (LPS). This work is motivated by the approach taken to improve the accuracies in the Global Positioning System (GPS), through noise modeling and augmentation. Since UWB indoor position tracking is accomplished using methods similar to that of the GPS, the same two general approaches can be used to improve accuracy. Trilateration calculations are affected by errors in distance measurements from the set of fixed points to the object of interest. When these errors are systemic, each distinct set of fixed points can be said to exhibit a unique set noise. For UWB indoor position tracking, the set of fixed points is a set of sensors measuring the distance to a tracked tag. In this work we develop a noise model for this sensor set noise, along with a particle filter that uses our set noise model. To the author\u27s knowledge, this noise has not been identified and modeled for an LPS. We test our methods on a commercially available UWB system in a real world setting. From the results we observe approximately 15% improvement in accuracy over raw UWB measurements. The UWB system is an example of an aided sensor since it requires a person to carry a device which continuously broadcasts its identity to determine its location. Therefore the location of each user is uniquely known even when there are multiple users present. However, it suffers from limited precision as compared to some unaided sensors such as a camera which typically are placed line of sight (LOS). An unaided system does not require active participation from people. Therefore it has more difficulty in uniquely identifying the location of each person when there are a large number of people present in the tracking area. Therefore we develop a generalized fusion framework to combine measurements from aided and unaided systems to improve the tracking precision of the aided system and solve data association issues in the unaided system. The framework uses a Kalman filter to fuse measurements from multiple sensors. We test our approach on two unaided sensor systems: Light Detection And Ranging (LADAR) and a camera system. Our study investigates the impact of increasing the number of people in an indoor environment on the accuracies using a proposed fusion framework. From the results we observed that depending on the type of unaided sensor system used for augmentation, the improvement in precision ranged from 6-25% for up to 3 people

    Noncontact Vital Signs Detection

    Get PDF
    Human health condition can be accessed by measurement of vital signs, i.e., respiratory rate (RR), heart rate (HR), blood oxygen level, temperature and blood pressure. Due to drawbacks of contact sensors in measurement, non-contact sensors such as imaging photoplethysmogram (IPPG) and Doppler radar system have been proposed for cardiorespiratory rates detection by researchers.The UWB pulse Doppler radars provide high resolution range-time-frequency information. It is bestowed with advantages of low transmitted power, through-wall capabilities, and high resolution in localization. However, the poor signal to noise ratio (SNR) makes it challenging for UWB radar systems to accurately detect the heartbeat of a subject. To solve the problem, phased-methods have been proposed to extract the phase variations in the reflected pulses modulated by human tiny thorax motions. Advance signal processing method, i.e., state space method, can not only be used to enhance SNR of human vital signs detection, but also enable the micro-Doppler trajectories extraction of walking subject from UWB radar data.Stepped Frequency Continuous Wave (SFCW) radar is an alternative technique useful to remotely monitor human subject activities. Compared with UWB pulse radar, it relieves the stress on requirement of high sampling rate analog-to-digital converter (ADC) and possesses higher signal-to-noise-ratio (SNR) in vital signs detection. However, conventional SFCW radar suffers from long data acquisition time to step over many frequencies. To solve this problem, multi-channel SFCW radar has been proposed to step through different frequency bandwidths simultaneously. Compressed sensing (CS) can further reduce the data acquisition time by randomly stepping through 20% of the original frequency steps.In this work, SFCW system is implemented with low cost, off-the-shelf surface mount components to make the radar sensors portable. Experimental results collected from both pulse and SFCW radar systems have been validated with commercial contact sensors and satisfactory results are shown

    Towards localisation with Doppler radar

    Full text link
    In this thesis the author introduces a novel method for Geo Localisation via Doppler Radar. The area of research is in the three dimensional space using amplitude and magnitude measurements. Geo Localisation in mobile applications is a useful technology that enables monitoring and gathering information about objects of interest

    Ultra-wideband position tracking on an assembly line

    Get PDF
    This works considers the problem of tracking objects on an assembly line using an ultra-wideband (UWB) positioning system. Assembly line tracking can be accomplished using touch sensors that physically detect when an object reaches a given location. Such tracking requires sensors placed throughout the entire assembly line, and only provides readings at the sensor locations. In contrast, UWB position tracking utilizes a set of sensors surrounding the whole area, enabling continuous position tracking with less infrastructure. Similar tracking can be accomplished using radio frequency identication (RFID) sensing, but this only provides readings when the parts are near RFID readers. The advantage of UWB position tracking is that it can provide sensor readings continuously throughout the entire tracking area. However, UWB position estimates are noisy, typically having an accuracy of 30-100 cm in a room-to-building sized area. This accuracy is sucient for monitoring which part of an assembly line a part is currently traversing, but is not accurate enough to enable precise tooling or positioning. In this work, we are using a map of an assembly line to constrain the motion tracking. This is similar to how a road map can be used to constrain position tracking for a GPS sensor. The idea is that the raw sensor measurements are constrained by the a priori known map of motion along the assembly line. We use these constraints and design a particle filter to improve position tracking accuracy
    corecore