102 research outputs found

    Étude et positionnement utilisant le réseau de capteur sans fil dans un environnement minier souterrain

    Get PDF
    La sécurité et la communication posent des problèmes majeurs auxquels il faut remédier dans les environnements hostiles comme les mines souterraines. Pour une communication fiable ainsi que pour tracer la position exacte d’un objet dans les mines souterraines, différentes technologies ont été déployé. Parmi ces dernières, le réseau de capteurs sans fil est considéré comme un outil prometteur pour les applications basées sur la localisation, à savoir, la surveillance des lieux, le repérage des mobiles et la navigation. En fait, les réseaux de capteur sans-fil fournissent une couverture d’une vaste gamme d’équipements fiables, efficaces, tolérants aux défaillances et évolutives. Cependant, les travaux de recherches précédents ont divisé la localisation en deux parties: les méthodes basées sur la portée et celles non-basées sur la portée. Où la première est précise et coûteuse tandis que la deuxième est présentée pour réduire la quantité d’énergie consommée du côté capteur dont les ressources sont limitées. Notre recherche se focalise sur la localisation basée sur la portée utilisant le réseau de capteurs sans fil dans les milieux internes et mines souterrains. Plusieurs techniques ont été proposées pour la localisation comme la réception de l'indicateur de force de signal (RSSI), le temps d'arrivée (TOA), la différence de temps d'arrivée (TDOA), l'angle d'arrivée (AOA). Bien que plusieurs travaux de recherches utilisant ces techniques aient été exécutés, l'approche de localisation à base de temps pour les environnements complexe comme la mine souterraine demeure limitée. Cette thèse offre de nouvelles solutions pour combler l’écart entre la localisation à base de temps et le réseau de capteurs sans fil à haute précision, pour l’environnement minier souterrain. De plus, nous avons utilisé une technologie émergente, à savoir les communications ultra-large bande, pour booster la performance et l'exactitude. Notre travail de recherche est subdivisé en deux principales parties : une partie simulation et une partie pratique. Dans la première, nous avons utilisé MATLAB pour faire les différentes simulations. La deuxième partie consiste en plusieurs mesures pratiques réalisées dans un environnement intérieur ainsi que dans une mine souterraine. Les résultats montrent une amélioration remarquable et une meilleure précision de la technique UWB à base de temps

    Development and Experimental Analysis of Wireless High Accuracy Ultra-Wideband Localization Systems for Indoor Medical Applications

    Get PDF
    This dissertation addresses several interesting and relevant problems in the field of wireless technologies applied to medical applications and specifically problems related to ultra-wideband high accuracy localization for use in the operating room. This research is cross disciplinary in nature and fundamentally builds upon microwave engineering, software engineering, systems engineering, and biomedical engineering. A good portion of this work has been published in peer reviewed microwave engineering and biomedical engineering conferences and journals. Wireless technologies in medicine are discussed with focus on ultra-wideband positioning in orthopedic surgical navigation. Characterization of the operating room as a medium for ultra-wideband signal transmission helps define system design requirements. A discussion of the first generation positioning system provides a context for understanding the overall system architecture of the second generation ultra-wideband positioning system outlined in this dissertation. A system-level simulation framework provides a method for rapid prototyping of ultra-wideband positioning systems which takes into account all facets of the system (analog, digital, channel, experimental setup). This provides a robust framework for optimizing overall system design in realistic propagation environments. A practical approach is taken to outline the development of the second generation ultra-wideband positioning system which includes an integrated tag design and real-time dynamic tracking of multiple tags. The tag and receiver designs are outlined as well as receiver-side digital signal processing, system-level design support for multi-tag tracking, and potential error sources observed in dynamic experiments including phase center error, clock jitter and drift, and geometric position dilution of precision. An experimental analysis of the multi-tag positioning system provides insight into overall system performance including the main sources of error. A five base station experiment shows the potential of redundant base stations in improving overall dynamic accuracy. Finally, the system performance in low signal-to-noise ratio and non-line-of-sight environments is analyzed by focusing on receiver-side digitally-implemented ranging algorithms including leading-edge detection and peak detection. These technologies are aimed at use in next-generation medical systems with many applications including surgical navigation, wireless telemetry, medical asset tracking, and in vivo wireless sensors

    Smart Passive Localization Using Time Difference of Arrival

    Get PDF
    A smart passive localization system using time difference of arrival (TDoA) measurements is designed and analyzed with the goal of providing the position information for the construction of frequency allocation maps

    A survey on acoustic positioning systems for location-based services

    Get PDF
    Positioning systems have become increasingly popular in the last decade for location-based services, such as navigation, and asset tracking and management. As opposed to outdoor positioning, where the global navigation satellite system became the standard technology, there is no consensus yet for indoor environments despite the availability of different technologies, such as radio frequency, magnetic field, visual light communications, or acoustics. Within these options, acoustics emerged as a promising alternative to obtain high-accuracy low-cost systems. Nevertheless, acoustic signals have to face very demanding propagation conditions, particularly in terms of multipath and Doppler effect. Therefore, even if many acoustic positioning systems have been proposed in the last decades, it remains an active and challenging topic. This article surveys the developed prototypes and commercial systems that have been presented since they first appeared around the 1980s to 2022. We classify these systems into different groups depending on the observable that they use to calculate the user position, such as the time-of-flight, the received signal strength, or the acoustic spectrum. Furthermore, we summarize the main properties of these systems in terms of accuracy, coverage area, and update rate, among others. Finally, we evaluate the limitations of these groups based on the link budget approach, which gives an overview of the system's coverage from parameters such as source and noise level, detection threshold, attenuation, and processing gain.Agencia Estatal de InvestigaciónResearch Council of Norwa

    Towards joint communication and sensing (Chapter 4)

    Get PDF
    Localization of user equipment (UE) in mobile communication networks has been supported from the early stages of 3rd generation partnership project (3GPP). With 5th Generation (5G) and its target use cases, localization is increasingly gaining importance. Integrated sensing and localization in 6th Generation (6G) networks promise the introduction of more efficient networks and compelling applications to be developed

    A Localization System for Optimizing the Deployment of Small Cells in 2-Tier Heterogeneous Wireless Networks

    Get PDF
    Due to the ever growing population of mobile device users and expansion on the number of devices and applications requiring data usage, there is an increasing demand for improved capacity in wireless cellular networks. Cell densification and 2-tier heterogeneous networks (HetNets) are two solutions which will assist 5G systems in meeting these growing capacity demands. Small-cell deployment over existing heterogeneous networks have been considered by researchers. Different strategies for deploying these small-cells within the existing network among which are random, cell-edge and high user concentration (HUC) have also been explored. Small cells deployed on locations of HUC offloads traffic from existing network infrastructure, ensure good Quality of Service (QoS) and balanced load in the network but there is a challenge of identifying HUC locations. There has been considerable research performed into techniques for determining user location and cell deployment. Currently localization can be achieved using time dependent methods such as Time of Arrival (ToA), Time Difference of Arrival (TDoA), or Global Positioning Systems (GPS). GPS based solutions provide high accuracy user positioning but suffer from concerns over user privacy, and other time dependent approaches require regular synchronization which can be difficult to achieve in practice. Alternatively, Received Signal Strength (RSS) based solutions can provide simple anonymous user data, requiring no extra hardware within the mobile handset but often rely on triangulation from adjacent Base Stations (BS). In mobile cellular networks such solutions are therefore often only applicable near the cell edge, as installing additional BS would increase the complexity and cost of a network deployment. The work presented in this thesis overcomes these limitations by providing an observer system for wireless networks that can be used to periodically monitor the cell coverage area and identify regions of high concentrations of users for possible small cell deployment in 2-tier heterogeneous networks. The observer system comprises of two collinear antennas separated by λ/2. The relative phase of each antenna was varied using a phase shifter so that the combined output of the two antennas were used to create sum and difference radiation patterns, and to steer the antenna radiation pattern creating different azimuth positions for AoA estimation. Statistical regression analysis was used to develop range estimation models based on four different environment empirical pathloss models for user range estimation. Users were located into clusters by classifying them into azimuth-range classes and counting the number of users in each class. Locations for small cell deployment were identified based on class population. BPEM, ADEM, BUEM, EARM and NLOS models were developed for more accurate range estimation. A prototype system was implemented and tested both outdoor and indoor using a network of WiFi nodes. Experimental results show close relationship with simulation and an average PER in range estimation error of 80% by applying developed error models. Based on both simulation and experiment, system showed good performance. By deploying micro-, pico-, or femto-cells in areas of higher user concentration, high data rates and good quality of service in the network can be maintained. The observer system provides the network manager with relative angle of arrival (AoA), distance estimation and relative location of user clusters within the cell. The observer system divides the cell into a series of azimuthal and range sectors, and determines which sector the users are located in. Simulation and a prototype design of the system is presented and results have shown system robustness and high accuracy for its purpose

    Recent Advances in Indoor Localization Systems and Technologies

    Get PDF
    Despite the enormous technical progress seen in the past few years, the maturity of indoor localization technologies has not yet reached the level of GNSS solutions. The 23 selected papers in this book present the recent advances and new developments in indoor localization systems and technologies, propose novel or improved methods with increased performance, provide insight into various aspects of quality control, and also introduce some unorthodox positioning methods
    corecore