987 research outputs found

    A survey of localization in wireless sensor network

    Get PDF
    Localization is one of the key techniques in wireless sensor network. The location estimation methods can be classified into target/source localization and node self-localization. In target localization, we mainly introduce the energy-based method. Then we investigate the node self-localization methods. Since the widespread adoption of the wireless sensor network, the localization methods are different in various applications. And there are several challenges in some special scenarios. In this paper, we present a comprehensive survey of these challenges: localization in non-line-of-sight, node selection criteria for localization in energy-constrained network, scheduling the sensor node to optimize the tradeoff between localization performance and energy consumption, cooperative node localization, and localization algorithm in heterogeneous network. Finally, we introduce the evaluation criteria for localization in wireless sensor network

    Indoor wireless communications and applications

    Get PDF
    Chapter 3 addresses challenges in radio link and system design in indoor scenarios. Given the fact that most human activities take place in indoor environments, the need for supporting ubiquitous indoor data connectivity and location/tracking service becomes even more important than in the previous decades. Specific technical challenges addressed in this section are(i), modelling complex indoor radio channels for effective antenna deployment, (ii), potential of millimeter-wave (mm-wave) radios for supporting higher data rates, and (iii), feasible indoor localisation and tracking techniques, which are summarised in three dedicated sections of this chapter

    Space-Time diversity for NLOS mitigation in TDOA-based positioning systems

    Get PDF
    This paper studies the potential impact of using space-Time information in the mitigation of the Non-LineOf-Sight condition in mobile subscriber's positioning systems. First of all, this work discusses the positioning problem based on measures of Time Differences Of Arrival departing from a more exact characterization of the signal statistics and including some geometrical restrictions to achieve an improved accurate. Furthermore, a novel approach that integrates signal propagation characteristics to information provided by a suitable timing estimation model based on Cramer Rao Bound for a Rayleigh-fading channel, when antenna arrays are used at the receiver and when a set ofchannel vector estimates are available, has been introduced to study the positive benefits of space-Time diversity. These approaches are evaluated within a realistic simulation scenario.Peer ReviewedPostprint (published version

    Locating the information: applications, technologies and future aspects

    Get PDF
    In today’s world, the demand for information is growing rapidly with respect to the human curiosity to explore the inside and the outside of our planet. In a simple analogy, the human body has thousands of sensors called receptor neurons to obtain information such as temperature or pressure from the environment. Similarly, recent developments in electronics and wireless communications lead engineers to the design of small-sized, low-power, low-cost sensor nodes which have the ability to communicate with each other over short distances and collect the information that is gathered

    Whitepaper on New Localization Methods for 5G Wireless Systems and the Internet-of-Things

    Get PDF
    • …
    corecore