40 research outputs found

    New Family of Stream Ciphers as Physically Clone-Resistant VLSI-Structures

    Full text link
    A new large class of 21002^{100} possible stream ciphers as keystream generators KSGs, is presented. The sample cipher-structure-concept is based on randomly selecting a set of 16 maximum-period Nonlinear Feedback Shift Registers (NLFSRs). A non-linear combining function is merging the 16 selected sequences. All resulting stream ciphers with a total state-size of 223 bits are designed to result with the same security level and have a linear complexity exceeding 2812^{81} and a period exceeding 21612^{161}. A Secret Unknown Cipher (SUC) is created randomly by selecting one cipher from that class of 21002^{100} ciphers. SUC concept was presented recently as a physical security anchor to overcome the drawbacks of the traditional analog Physically Unclonable Functions (PUFs). Such unknown ciphers may be permanently self-created within System-on-Chip SoC non-volatile FPGA devices to serve as a digital clone-resistant structure. Moreover, a lightweight identification protocol is presented in open networks for physically identifying such SUC structures in FPGA-devices. The proposed new family may serve for lightweight realization of clone-resistant identities in future self-reconfiguring SoC non-volatile FPGAs. Such self-reconfiguring FPGAs are expected to be emerging in the near future smart VLSI systems. The security analysis and hardware complexities of the resulting clone-resistant structures are evaluated and shown to exhibit scalable security levels even for post-quantum cryptography.Comment: 24 pages, 7 Figures, 3 Table

    Secure and Lightweight Strong PUF Challenge Obfuscation with Keyed Non-linear FSR

    Full text link
    We propose a secure and lightweight key based challenge obfuscation for strong PUFs. Our architecture is designed to be resilient against learning attacks. Our obfuscation mechanism uses non-linear feedback shift registers (NLFSRs). Responses are directly provided to the user, without error correction or extra post-processing steps. We also discuss the cost of protecting our architecture against power analysis attacks with clock randomization, and Boolean masking. Security against learning attacks is assessed using avalanche criterion, and deep-neural network attacks. We designed a testchip in 65 nm CMOS. When compared to the baseline arbiter PUF implementation, the cost increase of our proposed architecture is 1.27x, and 2.2x when using clock randomization, and Boolean masking, respectively

    DEVELOPMENT OF THE SEARCH METHOD FOR NON-LINEAR SHIFT REGISTERS USING HARDWARE, IMPLEMENTED ON FIELD PROGRAMMABLE GATE ARRAYS

    Get PDF
    The nonlinear feedback shift registers of the second order inare considered, because based on them it can be developed a generator of stream ciphers with enhanced cryptographic strength. Feasibility of nonlinear feedback shift register search is analyzed. These registers form a maximal length sequence, using programmable logic devices. Performance evaluation of programmable logic devices in the generation of pseudo-random sequence by nonlinear feedback shift registers is given. Recommendations to increase this performance are given. The dependence of the maximum generation rate (clock frequency), programmable logic devices on the number of concurrent nonlinear registers is analyzed. A comparison of the generation rate of the sequences that are generated by nonlinear feedback shift registers is done using hardware and software. The author suggests, describes and explores the search method of nonlinear feedback shift registers, generating a sequence with a maximum period. As the main result are found non-linear 26, 27, 28 and 29 degrees polynomials

    Design and Analysis of Cryptographic Pseudorandom Number/Sequence Generators with Applications in RFID

    Get PDF
    This thesis is concerned with the design and analysis of strong de Bruijn sequences and span n sequences, and nonlinear feedback shift register (NLFSR) based pseudorandom number generators for radio frequency identification (RFID) tags. We study the generation of span n sequences using structured searching in which an NLFSR with a class of feedback functions is employed to find span n sequences. Some properties of the recurrence relation for the structured search are discovered. We use five classes of functions in this structured search, and present the number of span n sequences for 6 <= n <= 20. The linear span of a new span n sequence lies between near-optimal and optimal. According to our empirical studies, a span n sequence can be found in the structured search with a better probability of success. Newly found span n sequences can be used in the composited construction and in designing lightweight pseudorandom number generators. We first refine the composited construction based on a span n sequence for generating long de Bruijn sequences. A de Bruijn sequence produced by the composited construction is referred to as a composited de Bruijn sequence. The linear complexity of a composited de Bruijn sequence is determined. We analyze the feedback function of the composited construction from an approximation point of view for producing strong de Bruijn sequences. The cycle structure of an approximated feedback function and the linear complexity of a sequence produced by an approximated feedback function are determined. A few examples of strong de Bruijn sequences with the implementation issues of the feedback functions of an (n+16)-stage NLFSR are presented. We propose a new lightweight pseudorandom number generator family, named Warbler family based on NLFSRs for smart devices. Warbler family is comprised of a combination of modified de Bruijn blocks (CMDB) and a nonlinear feedback Welch-Gong (WG) generator. We derive the randomness properties such as period and linear complexity of an output sequence produced by the Warbler family. Two instances, Warbler-I and Warbler-II, of the Warbler family are proposed for passive RFID tags. The CMDBs of both Warbler-I and Warbler-II contain span n sequences that are produced by the structured search. We analyze the security properties of Warbler-I and Warbler-II by considering the statistical tests and several cryptanalytic attacks. Hardware implementations of both instances in VHDL show that Warbler-I and Warbler-II require 46 slices and 58 slices, respectively. Warbler-I can be used to generate 16-bit random numbers in the tag identification protocol of the EPC Class 1 Generation 2 standard, and Warbler-II can be employed as a random number generator in the tag identification as well as an authentication protocol for RFID systems.1 yea

    Hardware implementation of a true random number generator integrating a hexagonal boron nitride memristor with a commercial microcontroller

    Get PDF
    The development of the internet-of-things requires cheap, light, small and reliable true random number generator (TRNG) circuits to encrypt the data-generated by objects or humans-before transmitting them. However, all current solutions consume too much power and require a relatively large battery, hindering the integration of TRNG circuits on most objects. Here we fabricated a TRNG circuit by exploiting stable random telegraph noise (RTN) current signals produced by memristors made of two-dimensional (2D) multi-layered hexagonal boron nitride (h-BN) grown by chemical vapor deposition and coupled with inkjet-printed Ag electrodes. When biased at small constant voltages (&lt;= 70 mV), the Ag/h-BN/Ag memristors exhibit RTN signals with very low power consumption (similar to 5.25 nW) and a relatively high current on/off ratio (similar to 2) for long periods (&gt;1 hour). We constructed TRNG circuits connecting an h-BN memristor to a small, light and cheap commercial microcontroller, producing a highly-stochastic, high-throughput signal (up to 7.8 Mbit s(-1)) even if the RTN at the input gets interrupted for long times up to 20 s, and if the stochasticity of the RTN signal is reduced. Our study presents the first full hardware implementation of 2D-material-based TRNGs, enabled by the unique stability and figures of merit of the RTN signals in h-BN based memristors

    Hardware implementation of a true random number generator integrating a hexagonal boron nitride memristor with a commercial microcontroller

    Get PDF
    The development of the internet-of-things requires cheap, light, small and reliable true random number generator (TRNG) circuits to encrypt the data—generated by objects or humans—before transmitting them. However, all current solutions consume too much power and require a relatively large battery, hindering the integration of TRNG circuits on most objects. Here we fabricated a TRNG circuit by exploiting stable random telegraph noise (RTN) current signals produced by memristors made of two-dimensional (2D) multi-layered hexagonal boron nitride (h-BN) grown by chemical vapor deposition and coupled with inkjet-printed Ag electrodes. When biased at small constant voltages (≤70 mV), the Ag/h-BN/Ag memristors exhibit RTN signals with very low power consumption (∼5.25 nW) and a relatively high current on/off ratio (∼2) for long periods (>1 hour). We constructed TRNG circuits connecting an h-BN memristor to a small, light and cheap commercial microcontroller, producing a highly-stochastic, high-throughput signal (up to 7.8 Mbit s−1) even if the RTN at the input gets interrupted for long times up to 20 s, and if the stochasticity of the RTN signal is reduced. Our study presents the first full hardware implementation of 2Dmaterial- based TRNGs, enabled by the unique stability and figures of merit of the RTN signals in h-BN based memristors.Ministry of Science and Technology, China 2019YFE0124200 2018YFE0100800National Natural Science Foundation of China (NSFC) 61874075Collaborative Innovation Centre of Suzhou Nano Science and TechnologyPriority Academic Program Development of Jiangsu Higher Education Institutions111 Project from the State Administration of Foreign Experts Affairs of ChinaKing Abdullah University of Science & TechnologyMinisterio de Ciencia, Tecnologia e Innovacion (MINCyT) PICT 2016/0579 PME 2015-0196 PICTE 2018-0192 UTN-FRBA CCUTIBA4764TC MATUNBA4936 CCUTNBA5182 CCUTNBA661

    Automated Design Space Exploration and Datapath Synthesis for Finite Field Arithmetic with Applications to Lightweight Cryptography

    Get PDF
    Today, emerging technologies are reaching astronomical proportions. For example, the Internet of Things has numerous applications and consists of countless different devices using different technologies with different capabilities. But the one invariant is their connectivity. Consequently, secure communications, and cryptographic hardware as a means of providing them, are faced with new challenges. Cryptographic algorithms intended for hardware implementations must be designed with a good trade-off between implementation efficiency and sufficient cryptographic strength. Finite fields are widely used in cryptography. Examples of algorithm design choices related to finite field arithmetic are the field size, which arithmetic operations to use, how to represent the field elements, etc. As there are many parameters to be considered and analyzed, an automation framework is needed. This thesis proposes a framework for automated design, implementation and verification of finite field arithmetic hardware. The underlying motif throughout this work is “math meets hardware”. The automation framework is designed to bring the awareness of underlying mathematical structures to the hardware design flow. It is implemented in GAP, an open source computer algebra system that can work with finite fields and has symbolic computation capabilities. The framework is roughly divided into two phases, the architectural decisions and the automated design genera- tion. The architectural decisions phase supports parameter search and produces a list of candidates. The automated design generation phase is invoked for each candidate, and the generated VHDL files are passed on to conventional synthesis tools. The candidates and their implementation results form the design space, and the framework allows rapid design space exploration in a systematic way. In this thesis, design space exploration is focused on finite field arithmetic. Three distinctive features of the proposed framework are the structure of finite fields, tower field support, and on the fly submodule generation. Each finite field used in the design is represented as both a field and its corresponding vector space. It is easy for a designer to switch between fields and vector spaces, but strict distinction of the two is necessary for hierarchical designs. When an expression is defined over an extension field, the top-level module contains element signals and submodules for arithmetic operations on those signals. The submodules are generated with corresponding vector signals and the arithmetic operations are now performed on the coordinates. For tower fields, the submodules are generated for the subfield operations, and the design is generated in a top-down fashion. The binding of expressions to the appropriate finite fields or vector spaces and a set of customized methods allow the on the fly generation of expressions for implementation of arithmetic operations, and hence submodule generation. In the light of NIST Lightweight Cryptography Project (LWC), this work focuses mainly on small finite fields. The thesis illustrates the impact of hardware implementation results during the design process of WAGE, a Round 2 candidate in the NIST LWC standardization competition. WAGE is a hardware oriented authenticated encryption scheme. The parameter selection for WAGE was aimed at balancing the security and hardware implementation area, using hardware implementation results for many design decisions, for example field size, representation of field elements, etc. In the proposed framework, the components of WAGE are used as an example to illustrate different automation flows and demonstrate the design space exploration on a real-world algorithm

    Full-length non-linear binary sequences with Zero Correlation Zone for multiuser communications

    Get PDF
    The research on new sets of sequences to be used asspreading codes in multiple user communications is still an activearea, despite the great amount of literature available since manyyears on this topic. In fact, new paradigms like dense anddecentralized wireless networks, where there is no centralcontroller to assign the resources to the nodes, are revamping theinterest on large sets of sequences providing adequate correlationproperties to support a big number of nodes, in potentially hostilechannels. This paper focuses on the Zero Correlation Zone (ZCZ)property exhibited by a family of non-linear binary sequencesfeaturing a great cardinality of their set and good securityrelatedfeatures, and provides evidence of their suitability tomultiuser communications, in channels affected by multipath

    Full-length non-linear binary sequences with Zero Correlation Zone for multiuser communications

    Get PDF
    none3noThe research on new sets of sequences that can be applied as spreading codes in multiple user communications is still an active area, even if this topic has been extensively investigated since long time. In fact, new communication paradigms like dense and decentralized wireless networks, where there is no central controller to assign the resources to the nodes, are revamping the interest on finding large sets of sequences providing adequate correlation properties to support a big number of nodes, in potentially hostile channels. This paper focuses on the Zero Correlation Zone (ZCZ) property exhibited by a family of nonlinear binary sequences featuring a great cardinality of their set, and good security-related features, and provides evidence of their suitability to multiuser communications, in channels affected by multipath.Sarayloo, M.; Gambi, E.; Spinsante, S.Sarayloo, Mahdiyar; Gambi, Ennio; Spinsante, Susann
    corecore