48 research outputs found

    Vegetation Dynamics Revealed by Remote Sensing and Its Feedback to Regional and Global Climate

    Get PDF
    This book focuses on some significant progress in vegetation dynamics and their response to climate change revealed by remote sensing data. The development of satellite remote sensing and its derived products offer fantastic opportunities to investigate vegetation changes and their feedback to regional and global climate systems. Special attention is given in the book to vegetation changes and their drivers, the effects of extreme climate events on vegetation, land surface albedo associated with vegetation changes, plant fingerprints, and vegetation dynamics in climate modeling

    THE USE OF REMOTE SENSING AND EDDY COVARIANCE TECHNOLOGIES TO CHARACTERIZE CROPLAND, DROUGHT AND LAND MANAGEMENTS AND THEIR IMPACTS ON ECOSYSTEM DYNAMICS

    Get PDF
    With the increasing population, human needs more food, fresh water, and other ecosystem services, which burdens the agricultural and natural ecosystems. Under the background of climate change, meeting these human needs becomes more challenging because of increasing temperature, climate extremes, etc. and their interaction with human activities. Thus, it is important to understand the impacts of climate change and human activities on ecosystem dynamics. The land-use and land-cover change, one of the most important human activities, greatly affects the function and dynamics of ecosystems. Drought is one of the most costly natural disasters and imposes wide-ranging impacts on the economy, environment, and society. This dissertation aimed to strengthen the usage of remote sensing and eddy covariance techniques in paddy rice mapping, agricultural drought monitoring, land management effects assessment, and evaluating the impacts of drought on cattle production. Chapter 2 identified the different flooding/transplanting periods of paddy rice and natural wetlands. The natural wetlands foods earlier and have a shorter duration than paddy rice in the Panjin Plain, a temperate region in China. Using this asynchronous flooding stages, this chapter extracted the paddy rice planting area from the rice-wetland coexistent area using MODIS and Landsat 8 imagery. The comparison and validation tests indicated high accuracy of our paddy rice map. Chapter 3 quantified the agricultural drought of tallgrass prairie in the SGP using a remotely sensed water-related vegetation index derived from MODIS. The results are comparable to other widely used drought products. The spatial pattern of drought duration was highly correlated with the decreasing precipitation gradient from east to west. LSWI-based drought depictions are sensitive to both precipitation anomalies from the historical mean and abnormal seasonal precipitation distributions. A comparison with other widely used drought products is made. Chapter 4 examined the impacts of burning, baling, and grazing on canopy and carbon fluxes in a pasture through integrating PhenoCam images, satellite remote sensing, and eddy covariance data. Landsat images were used to assess the baling area and the trajectory of vegetation recovery. MODIS vegetation indices (VIs) were used in the Vegetation Photosynthesis Model (VPM) to estimate gross primary production (GPPVPM) at a MODIS pixel for the flux tower (baled) site. Multiple datasets allowed studying intra-annual variations caused by various management practices. The larger increase of GPP after large rain in baled grassland (photosynthetically more active vegetation) compensated the reduction in GPP caused by baling. This result indicated that the interaction of management practices with climate is important when studying their impacts on GPP. Chapter 5 evaluated the impacts of drought on cattle production in the SGP during 2000-2015 use meteorological, remote sensing, and statistical data. The results showed that the consecutive years of drought and high temperatures in 2011 and 2012 dramatically decreased the cattle production in OK and TX. The decrease extent in KS was smaller probably because of the greater accessibility to the groundwater resource. 2011 was a whole year drought in the SGP which decreased the hay production and thus cattle production, while 2012 was a summer drought year in the Corn Belt which increased the corn price and thus cattle production. The Random Forest method performed well and shows the potential in predicting the dynamics of cattle production

    Impacts of temperature extremes on European vegetation during the growing season

    Get PDF
    Temperature is a key factor controlling plant growth and vitality in the temperate climates of the mid-latitudes like in vast parts of the European continent. Beyond the effect of average conditions, the timings and magnitudes of temperature extremes play a particularly crucial role, which needs to be better understood in the context of projected future rises in the frequency and/or intensity of such events. In this work, we employ event coincidence analysis (ECA) to quantify the likelihood of simultaneous occurrences of extremes in daytime land surface temperature anomalies (LSTAD) and the normalized difference vegetation index (NDVI). We perform this analysis for entire Europe based upon remote sensing data, differentiating between three periods corresponding to different stages of plant development during the growing season. In addition, we analyze the typical elevation and land cover type of the regions showing significantly large event coincidences rates to identify the most severely affected vegetation types. Our results reveal distinct spatio-temporal impact patterns in terms of extraordinarily large co-occurrence rates between several combinations of temperature and NDVI extremes. Croplands are among the most frequently affected land cover types, while elevation is found to have only a minor effect on the spatial distribution of corresponding extreme weather impacts. These findings provide important insights into the vulnerability of European terrestrial ecosystems to extreme temperature events and demonstrate how event-based statistics like ECA can provide a valuable perspective on environmental nexuses
    corecore