44 research outputs found

    SNPHunter: a bioinformatic software for single nucleotide polymorphism data acquisition and management

    Get PDF
    BACKGROUND: Single nucleotide polymorphisms (SNPs) provide an important tool in pinpointing susceptibility genes for complex diseases and in unveiling human molecular evolution. Selection and retrieval of an optimal SNP set from publicly available databases have emerged as the foremost bottlenecks in designing large-scale linkage disequilibrium studies, particularly in case-control settings. RESULTS: We describe the architectural structure and implementations of a novel software program, SNPHunter, which allows for both ad hoc-mode and batch-mode SNP search, automatic SNP filtering, and retrieval of SNP data, including physical position, function class, flanking sequences at user-defined lengths, and heterozygosity from NCBI dbSNP. The SNP data extracted from dbSNP via SNPHunter can be exported and saved in plain text format for further down-stream analyses. As an illustration, we applied SNPHunter for selecting SNPs for 10 major candidate genes for type 2 diabetes, including CAPN10, FABP4, IL6, NOS3, PPARG, TNF, UCP2, CRP, ESR1, and AR. CONCLUSION: SNPHunter constitutes an efficient and user-friendly tool for SNP screening, selection, and acquisition. The executable and user's manual are available at

    PSE: A tool for browsing a large amount of MEDLINE/PubMed abstracts with gene names and common words as the keywords

    Get PDF
    BACKGROUND: MEDLINE/PubMed (hereinafter called PubMed) is one of the most important literature databases for the biological and medical sciences, but it is impossible to read all related records due to the sheer size of the repository. We usually have to repeatedly enter keywords in a trial-and-error manner to extract useful records. Software which can reduce such a laborious task is therefore required. RESULTS: We developed a web-based software, the PubMed Sentence Extractor (PSE), which parses large number of PubMed abstracts, extracts and displays the co-occurrence sentences of gene names and other keywords, and some information from EntrezGene records. The result links to whole abstracts and other resources such as the Online Mendelian Inheritance in Men and Reference Sequence. While PSE executes at the sentence-level when evaluating the existence of keywords, the popular PubMed operates at the record-level. Therefore, the relationship between the two keywords, a gene name and a common word, is more accurately captured by PSE than PubMed. In addition, PSE shows the list of keywords and considers the synonyms and variations on gene names. Through these functions, PSE would reduce the task of searching through records for gene information. CONCLUSION: We developed PSE in order to extract useful records efficiently from PubMed. This system has four advantages over a simple PubMed search; the reduction in the amount of collected literatures, the showing of keyword lists, the consideration for synonyms and variations on gene names, and the links to external databases. We believe PSE is helpful in collecting necessary literatures efficiently in order to find research targets. PSE is freely available under the GPL licence as additional files to this manuscript

    Non-identical patterns of proviral insertions around host transcription units in lymphomas induced by different strains of murine leukemia virus

    Get PDF
    AbstractIn a small sample of 57 retrovirus integration sites (RISs) isolated from 23 end-stage lymphomas induced in NMRI mice by the B-lymphotropic Akv wt or an enhancer mutant hereof, Akv1–99, we identified 14 novel RISs and defined 9 novel CISs (common insertion sites). Moreover, when comparing with RISs from tumors induced by the T-lymphomagenic SL3-3, we observed that SL3-3 targets RefSeq promoter regions with a significantly higher frequency than Akv/Akv1–99 and in an orientation-dependent way. Altogether, our results strongly emphasize the importance of host genetic background and virus type for retroviral insertion mutagenesis screens and suggest that different types of MLV may favor specific genomic regions and orientations in order exert optimal effect on target gene expression during lymphoma induction and development

    An application in bioinformatics : a comparison of affymetrix and compugen human genome microarrays

    Get PDF
    The human genome microarrays from Compugen® and Affymetrix® were compared in the context of the emerging field of computational biology. The two premier database servers for genomic sequence data, the National Center for Biotechnology Information and the European Bioinformatics Institute, were described in detail. The various databases and data mining tools available through these data servers were also discussed. Microarrays were examined from a historical perspective and their main current applications-expression analysis, mutation analysis, and comparative genomic hybridization-were discussed. The two main types of microarrays, cDNA spotted microarrays and high-density spotted microarrays were analyzed by exploring the human genome microarray from Compugen® and the HGU133 Set from Affymetrix® respectively. Array design issues, sequence collection and analysis, and probe selection processes for the two representative types of arrays were described. The respective chip design of the two types of microarrays was also analyzed. It was found that the human genome microarray from Compugen 0 contains probes that interrogate 1,119,840 bases corresponding to 18,664 genes, while the HG-U133 Set from Affymetrix® contains probes that interrogate only 825,000 bases corresponding to 33,000 genes. Based on this, the efficiency of the 25-mer probes of the HG-U133 Set from Affymetrix® compared to the 60-mer probes of the microarray from Compugen® was questioned

    Non-coding sequence retrieval system for comparative genomic analysis of gene regulatory elements

    Get PDF
    BACKGROUND: Completion of the human genome sequence along with other species allows for greater understanding of the biochemical mechanisms and processes that govern healthy as well as diseased states. The large size of the genome sequences has made them difficult to study using traditional methods. There are many studies focusing on the protein coding sequences, however, not much is known about the function of non-coding regions of the genome. It has been demonstrated that parts of the non-coding region play a critical role as gene regulatory elements. Enhancers that regulate transcription processes have been found in intergenic regions. Furthermore, it is observed that regulatory elements found in non-coding regions are highly conserved across different species. However, the analysis of these regulatory elements is not as straightforward as it may first seem. The development of a centralized resource that allows for the quick and easy retrieval of non-coding sequences from multiple species and is capable of handing multi-gene queries is critical for the analysis of non-coding sequences. Here we describe the development of a web-based non-coding sequence retrieval system. RESULTS: This paper presents a Non-Coding Sequences Retrieval System (NCSRS). The NCSRS is a web-based bioinformatics tool that performs fast and convenient retrieval of non-coding and coding sequences from multiple species related to a specific gene or set of genes. This tool has compiled resources from multiple sources into one easy to use and convenient web based interface. With no software installation necessary, the user needs only internet access to use this tool. CONCLUSION: The unique features of this tool will be very helpful for those studying gene regulatory elements that exist in non-coding regions. The web based application can be accessed on the internet at:

    GeneSeer: A sage for gene names and genomic resources

    Get PDF
    BACKGROUND: Independent identification of genes in different organisms and assays has led to a multitude of names for each gene. This balkanization makes it difficult to use gene names to locate genomic resources, homologs in other species and relevant publications. METHODS: We solve the naming problem by collecting data from a variety of sources and building a name-translation database. We have also built a table of homologs across several model organisms: H. sapiens, M. musculus, R. norvegicus, D. melanogaster, C. elegans, S. cerevisiae, S. pombe and A. thaliana. This allows GeneSeer to draw phylogenetic trees and identify the closest homologs. This, in turn, allows the use of names from one species to identify homologous genes in another species. A website is connected to the database to allow user-friendly access to our tools and external genomic resources using familiar gene names. CONCLUSION: GeneSeer allows access to gene information through common names and can map sequences to names. GeneSeer also allows identification of homologs and paralogs for a given gene. A variety of genomic data such as sequences, SNPs, splice variants, expression patterns and others can be accessed through the GeneSeer interface. It is freely available over the web and can be incorporated in other tools through an http-based software interface described on the website. It is currently used as the search engine in the RNAi codex resource, which is a portal for short hairpin RNA (shRNA) gene-silencing constructs

    Using ESTs to improve the accuracy of de novo gene prediction

    Get PDF
    BACKGROUND: ESTs are a tremendous resource for determining the exon-intron structures of genes, but even extensive EST sequencing tends to leave many exons and genes untouched. Gene prediction systems based exclusively on EST alignments miss these exons and genes, leading to poor sensitivity. De novo gene prediction systems, which ignore ESTs in favor of genomic sequence, can predict such "untouched" exons, but they are less accurate when predicting exons to which ESTs align. TWINSCAN is the most accurate de novo gene finder available for nematodes and N-SCAN is the most accurate for mammals, as measured by exact CDS gene prediction and exact exon prediction. RESULTS: TWINSCAN_EST is a new system that successfully combines EST alignments with TWINSCAN. On the whole C. elegans genome TWINSCAN_EST shows 14% improvement in sensitivity and 13% in specificity in predicting exact gene structures compared to TWINSCAN without EST alignments. Not only are the structures revealed by EST alignments predicted correctly, but these also constrain the predictions without alignments, improving their accuracy. For the human genome, we used the same approach with N-SCAN, creating N-SCAN_EST. On the whole genome, N-SCAN_EST produced a 6% improvement in sensitivity and 1% in specificity of exact gene structure predictions compared to N-SCAN. CONCLUSION: TWINSCAN_EST and N-SCAN_EST are more accurate than TWINSCAN and N-SCAN, while retaining their ability to discover novel genes to which no ESTs align. Thus, we recommend using the EST versions of these programs to annotate any genome for which EST information is available. TWINSCAN_EST and N-SCAN_EST are part of the TWINSCAN open source software package

    SeqHound: biological sequence and structure database as a platform for bioinformatics research

    Get PDF
    BACKGROUND: SeqHound has been developed as an integrated biological sequence, taxonomy, annotation and 3-D structure database system. It provides a high-performance server platform for bioinformatics research in a locally-hosted environment. RESULTS: SeqHound is based on the National Center for Biotechnology Information data model and programming tools. It offers daily updated contents of all Entrez sequence databases in addition to 3-D structural data and information about sequence redundancies, sequence neighbours, taxonomy, complete genomes, functional annotation including Gene Ontology terms and literature links to PubMed. SeqHound is accessible via a web server through a Perl, C or C++ remote API or an optimized local API. It provides functionality necessary to retrieve specialized subsets of sequences, structures and structural domains. Sequences may be retrieved in FASTA, GenBank, ASN.1 and XML formats. Structures are available in ASN.1, XML and PDB formats. Emphasis has been placed on complete genomes, taxonomy, domain and functional annotation as well as 3-D structural functionality in the API, while fielded text indexing functionality remains under development. SeqHound also offers a streamlined WWW interface for simple web-user queries. CONCLUSIONS: The system has proven useful in several published bioinformatics projects such as the BIND database and offers a cost-effective infrastructure for research. SeqHound will continue to develop and be provided as a service of the Blueprint Initiative at the Samuel Lunenfeld Research Institute. The source code and examples are available under the terms of the GNU public license at the Sourceforge site http://sourceforge.net/projects/slritools/ in the SLRI Toolkit

    A systems-based approach for detecting molecular interactions across tissues.

    Get PDF
    Current high-throughput gene expression experiments have a straightforward design of examining the gene expression of one group or condition relative to that of another. The data is typically analyzed as if they represent strictly intracellular events, and often treats genes as coming from a homogeneous population. Although intracellular events are crucial to nearly all biological processes, cell-cell interactions are often just as important, especially when gene expression data is generated from heterogeneous cell populations, such as from whole tissues. Cell-cell molecular interactions are generally lost in the available analytical procedures and as a result, are not examined experimentally, at least not accurately or with efficiency. Most importantly, this imposes major limitations when studying gene expression changes in multiple samples that interact with one another. In order to addresses the limitations of current techniques, we have developed a novel systems-based approach that expands the traditional analysis of gene expression in two stages. This includes a novel sequence-based meta-analytic tool, AbsIDconvert, that allows for conversion of annotated features using an interval tree for storing and querying absolute genomic coordinates for comparison of multi-scale macro-molecule identifiers across platforms and/or organisms. In addition, a systems-based heuristic algorithm is developed to find intercellular interactions between two sets of genes, potentially from different tissues by utilizing location information of each gene along with the information available in the secondary databases in the form of interactions, pathways and signaling. AbsIDconvert is shown to provide a high accuracy in identifier conversion as compared to other available methodologies (typically at an average rate of 84%) while maintaining a higher efficiency (O(n*log(n)). Our intercellular interaction approach and underlying visualization shows promise in allowing researchers to uncover novel signaling pathways in an intercellular fashion that to this point has not been possible

    AffyMAPSDetector: a software tool to characterize Affymetrix GeneChip™ expression arrays with respect to SNPs

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>Affymetrix gene expression arrays incorporate paired perfect match (PM) and mismatch (MM) probes to distinguish true signals from those arising from cross-hybridization events. A MM signal often shows greater intensity than a PM signal; we propose that one underlying cause is the presence of allelic variants arising from single nucleotide polymorphisms (SNPs). To annotate and characterize SNP contributions to anomalous probe binding behavior we have developed a software tool called AffyMAPSDetector.</p> <p>Results</p> <p>AffyMAPSDetector can be used to describe any Affymetrix expression GeneChip™ with respect to SNPs. When AffyMAPSDetector was run on GeneChip™ HG-U95Av2 against dbSNP-build-123, we found 7286 probes (belonging to 2,582 probesets) containing SNPs, out of which 325 probes contained at least one SNP at position 13. Against dbSNP-build-126, 8758 probes (belonging to 3,002 probesets) contained SNPs, of which 409 probes contained at least one SNP at position 13. Therefore, depending on the expressed allele, the MM probe can sometimes be the transcript complement. This information was used to characterize probe measurements reported in a published, well-replicated lung adenocarcinoma study. The total intensity distributions showed that the SNP-containing probes had a larger negative mean intensity difference (PM-MM) and greater range of the difference than did probes without SNPs. In the sample replicates, SNP-containing probes with reproducible intensity ratios were identified, allowing selection of SNP probesets that yielded unique sample signatures. At the gene expression level, use of the (MM-PM) value for SNP-containing probes resulted in different Presence/Absence calls for some genes. Such a change in status of the genes has the clear potential for influencing downstream clustering and classification results.</p> <p>Conclusion</p> <p>Output from this tool characterizes SNP-containing probes on GeneChip™ microarrays, thus improving our understanding of factors contributing to expression measurements. The pattern of SNP binding examined so far indicates distinct behavior of the SNP-containing probes and has the potential to help us identify new SNPs. Knowing which probes contain SNPs provides flexibility in determining whether to include or exclude them from gene-expression intensity calculations; selected sets of SNP-containing probes produce sample-unique signatures.</p> <p>AffyMAPSDetector information is available at <url>http://www.binf.gmu.edu/weller/BMC_bioinformatics/AffyMapsDetector/index.html</url></p
    corecore