4,172 research outputs found

    Designing Efficient Parallel Algorithms for Graph Problems

    Get PDF
    Graph algorithms are concerned with the algorithmic aspects of solving graph problems. The problems are motivated from and have application to diverse areas of computer science, engineering and other disciplines. Problems arising from these areas of application are good candidates for parallelization since they often have both intense computational needs and stringent response time requirements. Motivated by these concerns, this thesis investigates parallel algorithms for these kinds of graph problems that have at least one of the following properties: the problems involve some type of dynamic updates; the sparsification technique is applicable; or the problems are closely related to communications network issues. The models of parallel computation used in our studies are the Parallel Random Access Machine (PRAM) model and the practical interconnection network models such as meshes and hypercubes. ¶ ..

    Study of Routing Protocols in Telecommunication Networks

    Get PDF
    In this paper we have discussed the problem of routing in telecommunication networks and the salient characteristics of some of the most popular routing schemes. In particular, we have discussed the characteristics of adaptive and multipath routing solutions versus static and single-path strategies

    Network Flows

    Get PDF
    Not Availabl

    Polynomial fixed-parameter algorithms : a case study for longest path on interval graphs.

    Get PDF
    We study the design of fixed-parameter algorithms for problems already known to be solvable in polynomial time. The main motivation is to get more efficient algorithms for problems with unattractive polynomial running times. Here, we focus on a fundamental graph problem: Longest Path; it is NP-hard in general but known to be solvable in O(n^4) time on n-vertex interval graphs. We show how to solve Longest Path on Interval Graphs, parameterized by vertex deletion number k to proper interval graphs, in O(k^9n) time. Notably, Longest Path is trivially solvable in linear time on proper interval graphs, and the parameter value k can be approximated up to a factor of 4 in linear time. From a more general perspective, we believe that using parameterized complexity analysis for polynomial-time solvable problems offers a very fertile ground for future studies for all sorts of algorithmic problems. It may enable a refined understanding of efficiency aspects for polynomial-time solvable problems, similarly to what classical parameterized complexity analysis does for NP-hard problems
    • …
    corecore