347 research outputs found

    Reduced sarcolemmal expression and function of the NBCe1 isoform of the Na+‒HCO¯3 cotransporter in hypertrophied cardiomyocytes of spontaneously hypertensive rats: Role of the renin-angiotensin system

    Get PDF
    Aims. Electroneutral (NBCn1) and electrogenic (NBCe1) isoforms of the Na+‒HCO¯3 cotransporter (NBC) coexist in the heart. We studied the expression and function of these isoforms in hearts of Wistar and spontaneously hypertensive rats (SHR), elucidating the direct implication of the renin-angiotensin system in the NBC regulation. Methods and results. We used myocytes from Wistar, SHR, losartan-treated SHR (Los-SHR), and Angiotensin II (Ang II)-induced cardiac hypertrophy. We found an overexpression of NBCe1 and NBCn1 proteins in SHR that was prevented in Los-SHR. Hyperkalaemic-induced pHi alkalization was used to study selective activation of NBCe1. Despite the increase in NBCe1 expression, its activity was lower in SHR than in Wistar or Los-SHR. Similar results were found in Ang II-induced hypertrophy. A specific inhibitory antibody against NBCe1 allowed the discrimination between NBCe1 and NBCn1 activity. Whereas in SHR most of the pHi recovery was due to NBCn1 stimulation, in Wistar and Los-SHR the activity of both isoforms was equitable, suggesting that the deteriorated cardiac NBCe1 function observed in SHR is compensated by an enhanced activity of NBCn1. Using the biotin method, we observed greater level of internalized NBCe1 protein in SHR than in the non-hypertophic groups, while with immunofluorescence we localized the protein in endosomes near the nucleus only in SHR. Conclusions. We conclude that Ang II is responsible for the impairment of the NBCe1 in hypertrophied hearts. This is due to retained transporter protein units in early endosomes. Moreover, NBCn1 activity seems to be increased in the hypertrophic myocardium of SHR, compensating impaired function of NBCe1.Facultad de Ciencias MédicasCentro de Investigaciones Cardiovasculare

    Characterization of the Na+/HCO3¯ cotransport in human neutrophils

    Get PDF
    Background: Bicarbonate transport has crucial roles in regulating intracellular pH (pHi) in a variety of cells. The purpose of this study was to evaluate its participation in the regulation of pHi in resting and stimulated human neutrophils. Methods: Freshly isolated human neutrophils acidified by an ammonium prepulse were used in this study. Results: We demonstrated that resting neutrophils have a bicarbonate transport mechanism that prevents acidification when the Na+/H+ exchanger is blocked by EIPA. Neutrophils acidified by an ammonium prepulse showed an EIPA-resistant recovery of pHi that was inhibited by the blocker of the anionic transporters SITS or the Na+/HCO3¯ cotransporter (NBC) selective inhibitor S0859, and abolished when sodium was removed from the extracellular medium. In western blot and RT-PCR analysis the expression of NBCe2 but not NBCe1 or NBCn1 was detected in neutrophils Acidified neutrophils increased the EIPA-insensitive pHi recovery rate when its activity was stimulated with fMLF/cytochalasin B. This increase in the removal of acid equivalents was insensitive to the blockade of the NADPH oxidase with DPI. Conclusion: It is concluded that neutrophils have an NBC that regulates basal pHi and is modulated by chemotactic agents.Facultad de Ciencias MédicasCentro de Investigaciones Cardiovasculare

    Compensatory role of the NBCn1 sodium/bicarbonate cotransporter on Ca2+-induced mitochondrial swelling in hypertrophic hearts

    Get PDF
    NBC Na+/HCO3 − cotransporter (NBCn1) and NHE1 Na+/H+ exchanger have been associated with cardiac disorders and recently located in coronary endothelial cells (CEC) and cardiomyocytes mitochondria, respectively. Mitochondrial NHE1 blockade delays permeability transition pore (MPTP) opening and reduces superoxide levels, two critical events exacerbated in cells of diseased hearts. Conversely, activation of NBCn1 prevented apoptosis in CEC subjected to ischemic stress. We characterized the role of the NHE1 and NBCn1 transporters in heart mitochondria from hypertrophic (SHR) and control (Wistar) rats. Expression of NHE1 was analyzed in left ventricular mitochondrial lysates (LVML), by immunoblots. NHE1 expression increased by ~40% in SHR compared to control (P < 0.05, n = 4). To examine NHE1-mediated Na+/H+ exchange activity in cardiac hypertrophy, mitochondria were loaded with BCECF-AM dye and the maximal rate of pHm change measured after the addition of 50 mM NaCl. SHR mitochondria had greater changes in pHm compared to Wistar, 0.10 ± 0.01 vs. 0.06 ± 0.01, respectively (P < 0.05, n = 5). In addition, mitochondrial suspensions from SHR and control myocardium were exposed to 200 μM CaCl2 to induce MPTP opening (light-scattering decrease, LSD) and swelling. Surprisingly, SHR rats showed smaller LSD and a reduction in mitochondrial swelling, 67 ± 10% (n = 15), compared to control, 100 ± 8% (n = 13). NBC inhibition with S0859 (1 μM) significantly increased swelling in both control 139 ± 10% (n = 8) and SHR 115 ± 10% (n = 4). Finally, NBCn1 Na+/HCO3 − cotransporter increased by twofold its expression in SHR LVML, compared to normal (P < 0.05, n = 5). We conclude that increased NBCn1 activity may play a compensatory role in hypertrophic hearts, protecting mitochondria from Ca-induced MPTP opening and swelling.Centro de Investigaciones Cardiovasculare

    Acid-base Balance and Oxidative Metabolism in Calcified Tissues

    Get PDF
    The calcified tissues, comprising bone and cartilage, are metabolically active tissues that bind and release calcium, bicarbonate and other substances according to systemic needs. Understanding the regulation of cellular metabolism in bone and cartilage is an important issue, since a link between the metabolism and diseases of these tissues is clear. An essential element in the function of bone-resorbing osteoclasts, namely regulation of bicarbonate transport, has not yet been thoroughly studied. Another example of an important but at the same time fairly unexplored subject of interest in this field is cartilage degeneration, an important determinant for development of osteoarthritis. The link between this and oxidative metabolism has rarely been studied. In this study, we have investigated the significance of bicarbonate transport in osteoclasts. We found that osteoclasts possess several potential proteins for bicarbonate transport, including carbonic anhydrase IV and XIV, and an electroneutral bicarbonate co-transporter NBCn1. We have also shown that inhibiting the function of these proteins has a significant impact on bone resorption and osteoclast morphology. Furthermore, we have explored oxidative metabolism in chondrocytes and found that carbonic anhydrase III (CA III), a protein linked to the prevention of protein oxidation in muscle cells, is also present in mouse chondrocytes, where its expression correlates with the presence of reactive oxygen species. Thus, our study provides novel information on the regulation of cellular metabolism in calcified tissues.Siirretty Doriast

    Characterization of the Na+/HCO3¯ cotransport in human neutrophils

    Get PDF
    Background: Bicarbonate transport has crucial roles in regulating intracellular pH (pHi) in a variety of cells. The purpose of this study was to evaluate its participation in the regulation of pHi in resting and stimulated human neutrophils. Methods: Freshly isolated human neutrophils acidified by an ammonium prepulse were used in this study. Results: We demonstrated that resting neutrophils have a bicarbonate transport mechanism that prevents acidification when the Na+/H+ exchanger is blocked by EIPA. Neutrophils acidified by an ammonium prepulse showed an EIPA-resistant recovery of pHi that was inhibited by the blocker of the anionic transporters SITS or the Na+/HCO3¯ cotransporter (NBC) selective inhibitor S0859, and abolished when sodium was removed from the extracellular medium. In western blot and RT-PCR analysis the expression of NBCe2 but not NBCe1 or NBCn1 was detected in neutrophils Acidified neutrophils increased the EIPA-insensitive pHi recovery rate when its activity was stimulated with fMLF/cytochalasin B. This increase in the removal of acid equivalents was insensitive to the blockade of the NADPH oxidase with DPI. Conclusion: It is concluded that neutrophils have an NBC that regulates basal pHi and is modulated by chemotactic agents.Facultad de Ciencias MédicasCentro de Investigaciones Cardiovasculare

    Regulation of Intracellular pH is Altered in Cardiac Myocytes of Ovariectomized Rats

    Get PDF
    Background: It is well known that after menopause women are exposed to a greater cardiovascular risk, but the intracellular modifications are not properly described. The sodium/proton exchanger (NHE) and the sodium/bicarbonate cotransporter (NBC) regulate the intracellular pH and, indirectly, the intracellular sodium concentration ([Na+]). There are 2 isoforms of NBC in the heart: the electrogenic (1Na+/2HCO 3 ; NBCe1) and the electroneutral (1Na+/1HCO 3 ; NBCn1). Because NHE and NBCn1 hyperactivity as well as the NBCe1 decreased activity have been associated with several cardiovascular pathologies, the aim of this study was to investigate the potential alterations of the alkalinizing transporters during the postmenopausal period. Methods and Results: Three-month ovariectomized rats (OVX) were used. The NHE activity and protein expression are significantly increased in OVX. The NBCe1 activity is diminished, and the NBCn1 activity becomes predominant in OVX rats. p-Akt levels showed a significant diminution in OVX. Finally, NHE activity in platelets from OVX rats is also higher in comparison to sham rats, resulting in a potential biomarker of cardiovascular diseases. Conclusions: Our results demonstrated for the first time that in the cardiac ventricular myocytes of OVX rats NHE and NBC isoforms are altered, probably because of the decreased level of p-Akt, compromising the ionic intracellular homeostasis. (J Am Heart Assoc. 2019;8:e011066. DOI: 10.1161/JAHA.118.011066.)Centro de Investigaciones Cardiovasculare

    Regulation and roles of bicarbonate transporters in cancer

    Get PDF
    A unifying feature of solid tumors is a markedly altered pH profile compared to normal tissues. This reflects that solid tumors, despite completely different origins, often share several phenotypic properties with implications for intra- and extracellular pH. These include: a metabolic shift in most cancer cells towards more acid-producing pathways, reflecting both oncogenic signaling and the development of hypoxia in poorly perfused regions of the tumors; the poorly perfused and often highly dense tumor microenvironment, reducing the diffusive flux of acid equivalents compared to that in normal tissues; and the markedly altered regulation of the expression and activity of pH-regulatory transport proteins in the cancer cells. While some of these properties of tumors have been well described in recent years, the great majority of the research in this clinically important area has focused on proton transport, in particular via the Na+/H+-exchanger 1 (SLC9A1, NHE1) and various H+ ATPases. We have, however, recently demonstrated that at least under some conditions, including in vitro models of HER2 positive breast cancer, and measurements obtained directly in freshly dissected human mammary tumors, bicarbonate transporters such as the electroneutral Na+,HCO3--cotransporter (SLC4A7, NBCn1), are upregulated and play central roles in pH regulation. In this review, we summarize and discuss the current knowledge regarding the regulation and roles of bicarbonate transport in cancer
    corecore