54,814 research outputs found

    Facet recovery and light emission from GaN/InGaN/GaN core-shell structures grown by metal organic vapour phase epitaxy on etched GaN nanorod arrays

    Get PDF
    The use of etched nanorods from a planar template as a growth scaffold for a highly regular GaN/InGaN/GaN core-shell structure is demonstrated. The recovery of m-plane non-polar facets from etched high-aspect-ratio GaN nanorods is studied with and without the introduction of a hydrogen silsesquioxane passivation layer at the bottom of the etched nanorod arrays. This layer successfully prevented c-plane growth between the nanorods, resulting in vertical nanorod sidewalls (∼89.8°) and a more regular height distribution than re-growth on unpassivated nanorods. The height variation on passivated nanorods is solely determined by the uniformity of nanorod diameter, which degrades with increased growth duration. Facet-dependent indium incorporation of GaN/InGaN/GaN core-shell layers regrown onto the etched nanorods is observed by high-resolution cathodoluminescence imaging. Sharp features corresponding to diffracted wave-guide modes in angle-resolved photoluminescence measurements are evidence of the uniformity of the full core-shell structure grown on ordered etched nanorods

    Digital electric field induced switching of plasmonic nanorods using an electro-optic fluid fiber

    Full text link
    We demonstrate the digital electric field induced switching of plasmonic nanorods between 1 and 0 orthogonal aligned states using an electro-optic fluid fiber component. We show by digitally switching the nanorods, that thermal rotational diffusion of the nanorods can be circumvented, demonstrating an approach to achieve submicrosecond switching times. We also show, from an initial unaligned state, that the nanorods can be aligned into the applied electric field direction in 110 nanoseconds. The high-speed digital switching of plasmonic nanorods integrated into an all-fiber optical component may provide novel opportunities for remote sensing and signaling applications

    MOCVD growth mechanisms of ZnO nanorods

    Get PDF
    ZnO is a promising material for the fabrication of light emitting devices. One approach to achieve this goal is to use ZnO nanorods because of their expected high crystalline and optical quality. Catalyst free growth of nanorods by metalorganic chemical vapour deposition (MOCVD) was carried out on (0001) sapphire substrates. Arrays of well-aligned, vertical nanorods were obtained with uniform lengths and diameters. A thin wetting layer in epitaxy with the sapphire substrate is formed first, followed by pyramids and nanorods. The nucleation of nanorods occurs either directly at the interface, or later on top of some of the pyramids, suggesting various nucleation mechanisms. It is shown that crystal polarity plays a critical role in the growth mechanism with nanorods of Zn polarity and their surrounding pyramids with O polarity. A growth mechanism is proposed to explain that most threading dislocations lie in the wetting layer, with only a few in the pyramids and none in the nanorods

    Blood clearance and tissue distribution of PEGylated and non-PEGylated gold nanorods after intravenous administration in rats\ud

    Get PDF
    Aims: To develop and determine the safety of gold nanorods, whose aspect ratios can be tuned to obtain plasmon peaks between 650 and 850 nm, as contrast enhancing agents for diagnostic and therapeutic applications. Materials & methods: In this study we compared the blood clearance and tissue distribution of cetyl trimethyl ammonium bromide (CTAB)-capped and polyethylene glycol (PEG)-coated gold nanorods after intravenous injection in the tail vein of rats. The gold content in blood and various organs was measured quantitatively with inductively coupled plasma mass spectrometry. Results & discussion: The CTAB-capped gold nanorods were almost immediately (<15 min) cleared from the blood circulation whereas the PEGylation of gold nanorods resulted in a prolonged blood circulation with a half-life time of 19 h and more wide spread tissue distribution. While for the CTAB-capped gold nanorods the tissue distribution was limited to liver, spleen and lung, the PEGylated gold nanorods also distributed to kidney, heart, thymus, brain and testes. PEGylation of the gold nanorods resulted in the spleen being the organ with the highest exposure, whereas for the non-PEGylated CTAB-capped gold nanorods the liver was the organ with the highest exposure, per gram of organ. Conclusion: The PEGylation of gold nanorods resulted in a prolongation of the blood clearance and the highest organ exposure in the spleen. In view of the time frame (up to 48 h) of the observed presence in blood circulation, PEGylated gold nanorods can be considered to be promising candidates for therapeutic and diagnostic imaging purpose

    With No Deliberate Speed: The Segregation of Roma Children in Europe

    Get PDF
    In this study, by taking the advantage of both inorganic ZnO nanoparticles and the organic material chitosan as a composite seed layer, we have fabricated well-aligned ZnO nanorods on a gold-coated glass substrate using the hydrothermal growth method. The ZnO nanoparticles were characterized by the Raman spectroscopic techniques, which showed the nanocrystalline phase of the ZnO nanoparticles. Different composites of ZnO nanoparticles and chitosan were prepared and used as a seed layer for the fabrication of well-aligned ZnO nanorods. Field emission scanning electron microscopy, energy dispersive X-ray, high-resolution transmission electron microscopy, X-ray diffraction, and infrared reflection absorption spectroscopic techniques were utilized for the structural characterization of the ZnO nanoparticles/chitosan seed layer-coated ZnO nanorods on a gold-coated glass substrate. This study has shown that the ZnO nanorods are well-aligned, uniform, and dense, exhibit the wurtzite hexagonal structure, and are perpendicularly oriented to the substrate. Moreover, the ZnO nanorods are only composed of Zn and O atoms. An optical study was also carried out for the ZnO nanoparticles/chitosan seed layer-coated ZnO nanorods, and the obtained results have shown that the fabricated ZnO nanorods exhibit good crystal quality. This study has provided a cheap fabrication method for the controlled morphology and good alignment of ZnO nanorods, which is of high demand for enhancing the working performance of optoelectronic devices

    Schottky nanocontacts on ZnO nanorod arrays

    Get PDF
    We report on fabrication and electrical characteristics of ZnO nanorod Schottky diode arrays. High quality ZnO nanorods were grown for the fabrication of the Schottky diodes using noncatalytic metalorganic vapor phase epitaxy and Au was evaporated on the tips of the vertically well-aligned ZnO nanorods. I-V characteristics of both bare ZnO and Au/ZnO heterostructure nanorod arrays were measured using current-sensing atomic force microscopy. Although both nanorods exhibited nonlinear and asymmetric I-V characteristic curves, Au/ZnO heterostructure nanorods demonstrated much improved electrical characteristics: the reverse-bias breakdown voltage was improved from -3 to -8 V by capping a Au layer on the nanorod tips. The origin of the enhanced electrical characteristics for the heterostructure nanorods is suggested. (C) 2003 American Institute of Physics.X11326sciescopu

    Skokie, the ACLU and the Endurance of Democratic Theory

    Get PDF
    ZnO nanorods (NRs) with high surface area to volume ratio and biocompatibility is used as an efficient photosensitizer carrier system and at the same time providing intrinsic white light needed to achieve cancer cell necrosis. In this letter, ZnO nanorods used for the treatment of breast cancer cell (T47D) are presented. To adjust the sample for intracellular experiments, we have grown the ZnO nanorods on the tip of borosilicate glass capillaries (0.5 mu m diameter) by aqueous chemical growth technique. The grown ZnO nanorods were conjugated using protoporphyrin dimethyl ester (PPDME), which absorbs the light emitted by the ZnO nanorods. Mechanism of cytotoxicity appears to involve the generation of singlet oxygen inside the cell. The novel findings of cell-localized toxicity indicate a potential application of PPDME-conjugated ZnO NRs in the necrosis of breast cancer cell within few minutes
    corecore