2,900 research outputs found

    Stack and Queue Layouts via Layered Separators

    Full text link
    It is known that every proper minor-closed class of graphs has bounded stack-number (a.k.a. book thickness and page number). While this includes notable graph families such as planar graphs and graphs of bounded genus, many other graph families are not closed under taking minors. For fixed gg and kk, we show that every nn-vertex graph that can be embedded on a surface of genus gg with at most kk crossings per edge has stack-number O(logn)\mathcal{O}(\log n); this includes kk-planar graphs. The previously best known bound for the stack-number of these families was O(n)\mathcal{O}(\sqrt{n}), except in the case of 11-planar graphs. Analogous results are proved for map graphs that can be embedded on a surface of fixed genus. None of these families is closed under taking minors. The main ingredient in the proof of these results is a construction proving that nn-vertex graphs that admit constant layered separators have O(logn)\mathcal{O}(\log n) stack-number.Comment: Appears in the Proceedings of the 24th International Symposium on Graph Drawing and Network Visualization (GD 2016

    Beyond Outerplanarity

    Full text link
    We study straight-line drawings of graphs where the vertices are placed in convex position in the plane, i.e., convex drawings. We consider two families of graph classes with nice convex drawings: outer kk-planar graphs, where each edge is crossed by at most kk other edges; and, outer kk-quasi-planar graphs where no kk edges can mutually cross. We show that the outer kk-planar graphs are (4k+1+1)(\lfloor\sqrt{4k+1}\rfloor+1)-degenerate, and consequently that every outer kk-planar graph can be (4k+1+2)(\lfloor\sqrt{4k+1}\rfloor+2)-colored, and this bound is tight. We further show that every outer kk-planar graph has a balanced separator of size O(k)O(k). This implies that every outer kk-planar graph has treewidth O(k)O(k). For fixed kk, these small balanced separators allow us to obtain a simple quasi-polynomial time algorithm to test whether a given graph is outer kk-planar, i.e., none of these recognition problems are NP-complete unless ETH fails. For the outer kk-quasi-planar graphs we prove that, unlike other beyond-planar graph classes, every edge-maximal nn-vertex outer kk-quasi planar graph has the same number of edges, namely 2(k1)n(2k12)2(k-1)n - \binom{2k-1}{2}. We also construct planar 3-trees that are not outer 33-quasi-planar. Finally, we restrict outer kk-planar and outer kk-quasi-planar drawings to \emph{closed} drawings, where the vertex sequence on the boundary is a cycle in the graph. For each kk, we express closed outer kk-planarity and \emph{closed outer kk-quasi-planarity} in extended monadic second-order logic. Thus, closed outer kk-planarity is linear-time testable by Courcelle's Theorem.Comment: Appears in the Proceedings of the 25th International Symposium on Graph Drawing and Network Visualization (GD 2017

    On Counting Oracles for Path Problems

    Get PDF
    We initiate the study of counting oracles for various path problems in graphs. Distance oracles have gained a lot of attention in recent years, with studies of the underlying space and time tradeoffs. For a given graph G, a distance oracle is a data structure which can be used to answer distance queries for pairs of vertices s,t in V(G). In this work, we extend the set up to answering counting queries: for a pair of vertices s,t, the oracle needs to provide the number of (shortest or all) paths from s to t. We present O(n^{1.5}) preprocessing time, O(n^{1.5}) space, and O(sqrt{n}) query time algorithms for oracles counting shortest paths in planar graphs and for counting all paths in planar directed acyclic graphs. We extend our results to other graphs which admit small balanced separators and present applications where our oracle improves the currently best known running times

    Engineering planar separator algorithms

    Get PDF
    We consider classical linear-time planar separator algorithms, determining for a given planar graph a small subset of the nodes whose removal separates the graph into two components of similar size. These algorithms are based upon Planar Separator Theorems, which guarantee separators of size asymptotically in the square root of the number of nodes n and remaining components of size less than 2n/3. In this work, we present a comprehensive experimental study of the algorithms applied to a large variety of graphs, where the main goal is to find separators that do not only satisfy upper bounds but also possess other desirable qualities with respect to separator size and component balance. We propose the usage of fundamental cycles, whose size is at most twice the diameter of the graph, as planar separators: For graphs of small diameter the guaranteed bound is better than the bounds of the classical algorithms, and it turns out that this simple strategy almost always outperforms the other algorithms, even for graphs with large diameter

    Engineering Planar Separator Algorithms

    Get PDF
    We consider classical linear-time planar separator algorithms, determining for a given planar graph a small subset of the nodes whose removal separates the graph into two components of similar size. These algorithms are based upon Planar Separator Theorems, which guarantee separators of size asymptotically in the square root of the number of nodes n and remaining components of size less than 2n/3. In this work, we present a comprehensive experimental study of the algorithms applied to a large variety of graphs, where the main goal is to find separators that do not only satisfy upper bounds but also possess other desirable qualities with respect to separator size and component balance. We propose the usage of fundamental cycles, whose size is at most twice the diameter of the graph, as planar separators: For graphs of small diameter the guaranteed bound is better than the bounds of the classical algorithms, and it turns out that this simple strategy almost always outperforms the other algorithms, even for graphs with large diameter

    Crossing Patterns in Nonplanar Road Networks

    Full text link
    We define the crossing graph of a given embedded graph (such as a road network) to be a graph with a vertex for each edge of the embedding, with two crossing graph vertices adjacent when the corresponding two edges of the embedding cross each other. In this paper, we study the sparsity properties of crossing graphs of real-world road networks. We show that, in large road networks (the Urban Road Network Dataset), the crossing graphs have connected components that are primarily trees, and that the remaining non-tree components are typically sparse (technically, that they have bounded degeneracy). We prove theoretically that when an embedded graph has a sparse crossing graph, it has other desirable properties that lead to fast algorithms for shortest paths and other algorithms important in geographic information systems. Notably, these graphs have polynomial expansion, meaning that they and all their subgraphs have small separators.Comment: 9 pages, 4 figures. To appear at the 25th ACM SIGSPATIAL International Conference on Advances in Geographic Information Systems(ACM SIGSPATIAL 2017

    Edge separators for graphs of bounded genus with applications

    No full text
    nn-vertex graph of positive genus gg and maximal degree kk has an O(gkn)O(\sqrt{gkn}) edge separator. This bound is best possible to within a constant factor. The separator can be found in O(g+n)O(g+n) time provided that we start with an imbedding of the graph in its genus surface. This extends known results on planar graphs and similar results about vertex separators. We apply the edge separator to the isoperimetric problem, to efficient embeddings of graphs of genus gg into various classes of graphs including trees, meshes and hypercubes and to showing lower bounds on crossing numbers of Kn,Km,nK_n,K_{m,n} and QnQ_n drawn on surfaces of genus gg
    corecore