178 research outputs found

    A survey of machine learning techniques applied to self organizing cellular networks

    Get PDF
    In this paper, a survey of the literature of the past fifteen years involving Machine Learning (ML) algorithms applied to self organizing cellular networks is performed. In order for future networks to overcome the current limitations and address the issues of current cellular systems, it is clear that more intelligence needs to be deployed, so that a fully autonomous and flexible network can be enabled. This paper focuses on the learning perspective of Self Organizing Networks (SON) solutions and provides, not only an overview of the most common ML techniques encountered in cellular networks, but also manages to classify each paper in terms of its learning solution, while also giving some examples. The authors also classify each paper in terms of its self-organizing use-case and discuss how each proposed solution performed. In addition, a comparison between the most commonly found ML algorithms in terms of certain SON metrics is performed and general guidelines on when to choose each ML algorithm for each SON function are proposed. Lastly, this work also provides future research directions and new paradigms that the use of more robust and intelligent algorithms, together with data gathered by operators, can bring to the cellular networks domain and fully enable the concept of SON in the near future

    Accessibility Degradation Prediction on LTE/SAE Network Using Discrete Time Markov Chain (DTMC) Model

    Get PDF
    In this paper, an algorithm for predicting accessibility performance on an LTE/SAE network based on relevant historical key performance indicator (KPI) data is proposed. Since there are three KPIs related to accessibility, each representing different segments, a method to map these three KPI values onto the status of accessibility performance is proposed. The network conditions are categorized as high, acceptable or low for each time interval of observation. The first state shows that the system is running optimally, while the second state shows that the system has deteriorated and needs full attention, and the third state indicates that the system has gone into degraded conditions that cannot be tolerated. After the state sequence has been obtained, a transition probability matrix can be derived, which can be used to predict future conditions using a DTMC model. The results obtained are system predictions in terms of probability values for each state for a specific future time. These prediction values are required for proactive health monitoring and fault management. Accessibility degradation prediction is then conducted by using measurement data derived from an eNodeB in the LTE network for a period of one month

    Mobile edge computing-based data-driven deep learning framework for anomaly detection

    Get PDF
    5G is anticipated to embed an artificial intelligence (AI)-empowerment to adroitly plan, optimize and manage the highly complex network by leveraging data generated at different positions of the network architecture. Outages and situation leading to congestion in a cell pose severe hazard for the network. High false alarms and inadequate accuracy are the major limitations of modern approaches for the anomaly—outage and sudden hype in traffic activity that may result in congestion—detection in mobile cellular networks. This indicates wasting limited resources that ultimately leads to an elevated operational expenditure (OPEX) and also interrupting quality of service (QoS) and quality of experience (QoE). Motivated by the outstanding success of deep learning (DL) technology, our study applies it for detection of the above-mentioned anomalies and also supports mobile edge computing (MEC) paradigm in which core network (CN)’s computations are divided across the cellular infrastructure among different MEC servers (co-located with base stations), to relief the CN. Each server monitors user activities of multiple cells and utilizes LL -layer feedforward deep neural network (DNN) fueled by real call detail record (CDR) dataset for anomaly detection. Our framework achieved 98.8% accuracy with 0.44% false positive rate (FPR)—notable improvements that surmount the deficiencies of the old studies. The numerical results explicate the usefulness and dominance of our proposed detector

    Context-Aware Self-Healing for Small Cell Networks

    Get PDF
    These can be an invaluable source of information for the management of the network, in a way that we have denominated as context-aware SON, which is the approach proposed in this thesis. To develop this concept, the thesis follows a top-down approach. Firstly, the characteristics of the cellular deployments are assessed, especially for indoor small cell networks. In those scenarios, the need for context-aware SON is evaluated and considered indispensable. Secondly, a new cellular architecture is defined to integrate both context information and SON mechanisms in the management plane of the mobile network. Thus, the specifics of making context an integral part of cellular OAM/SON are defined. Also, the real-world implementation of the architecture is proposed. Thirdly, from the established general SON architecture, a logical self-healing framework is defined to support the context-aware healing mechanisms to be developed. Fourthly, different self-healing algorithms are defined depending on the failures to be managed and the conditions of the considered scenario. The mechanisms are based on probabilistic analysis, making use of both context and network data for detection and diagnosis of cellular issues. The conditions for the implementation of these methods are assessed. Their applicability is evaluated by means of simulators and testbed trials. The results show important improvements in performance and capabilities in comparison to previous methods, demonstrating the relevance of the proposed approach.The last years have seen a continuous increase in the use of mobile communications. To cope with the growing traffic, recently deployed technologies have deepened the adoption of small cells (low powered base stations) to serve areas with high demand or coverage issues, where macrocells can be both unsuccessful or inefficient. Also, new cellular and non-cellular technologies (e.g. WiFi) coexist with legacy ones, including also multiple deployment schemes (macrocell, small cells), in what is known as heterogeneous networks (HetNets). Due to the huge complexity of HetNets, their operation, administration and management (OAM) became increasingly difficult. To overcome this, the NGMN Alliance and the 3GPP defined the Self-Organizing Network (SON) paradigm, aiming to automate the OAM procedures to reduce their costs and increase the resulting performance. One key focus of SON is the self-healing of the network, covering the automatic detection of problems, the diagnosis of their causes, their compensation and their recovery. Until recently, SON mechanisms have been solely based on the analysis of alarms and performance indicators. However, on the one hand, this approach has become very limited given the complexity of the scenarios, and particularly in indoor cellular environments. Here, the deployment of small cells, their coexistence with multiple telecommunications systems and the nature of those environments (in terms of propagation, coverage overlapping, fast demand changes and users' mobility) introduce many challenges for classic SON. On the other hand, modern user equipment (e.g. smartphones), equipped with powerful processors, sensors and applications, generate a huge amount of context information. Context refers to those variables not directly associated with the telecommunication service, but with the terminals and their environment. This includes the user's position, applications, social data, etc

    Aspects of knowledge mining on minimizing drive tests in self-organizing cellular networks

    Get PDF
    The demand for mobile data traffic is about to explode and this drives operators to find ways to further increase the offered capacity in their networks. If networks are deployed in the traditional way, this traffic explosion will be addressed by increasing the number of network elements significantly. This is expected to increase the costs and the complexity of planning, operating and optimizing the networks. To ensure effective and cost-efficient operations, a higher degree of automation and self-organization is needed in the next generation networks. For this reason, the concept of self-organizing networks was introduced in LTE covering multitude of use cases. This was specifically done in the areas of self-configuration, self-optimization and selfhealing of networks. From an operator’s perspective, automated collection and analysis of field measurements while complementing the traditional drive test campaigns is one of the top use cases that can provide significant cost savings in self-organizing networks. This thesis studies the Minimization of Drive Tests in self-organizing cellular networks from three different aspects. The first aspect is network operations, and particularly the network fault management process, as the traditional drive tests are often conducted for troubleshooting purposes. The second aspect is network functionality, and particularly the technical details about the specified measurement and signaling procedures in different network elements that are needed for automating the collection of the field measurement data. The third aspect concerns the analysis of the measurement databases that is a process used for increasing the degree of automation and self-awareness in the networks, and particularly the mathematical means for autonomously finding meaningful patterns of knowledge from huge amounts of data. Although the above mentioned technical areas have been widely discussed in previous literature, it has been done separately and only a few papers discuss how for example, knowledge mining is employed for processing field measurement data in a way that minimizes the drive tests in self-organizing LTE networks. The objective of the thesis is to use well known knowledge mining principles to develop novel self-healing and self-optimization algorithms. These algorithms analyze MDT databases to detect coverage holes, sleeping cells and other geographical areas of anomalous network behavior. The results of the research suggest that by employing knowledge mining in processing the MDT databases, one can acquire knowledge for discriminating between different network problems and detecting anomalous network behavior. For example, downlink coverage optimization is enhanced by classifying RLF reports into coverage, interference and handover problems. Moreover, by incorporating a normalized power headroom report with the MDT reports, better discrimination between uplink coverage problems and the parameterization problems is obtained. Knowledge mining is also used to detect sleeping cells by means of supervised and unsupervised learning. The detection framework is based on a novel approach where diffusion mapping is used to learn about network behavior in its healthy state. The sleeping cells are detected by observing an increase in the number of anomalous reports associated with a certain cell. The association is formed by correlating the geographical location of anomalous reports with the estimated dominance areas of the cells. Moreover, RF fingerprint positioning of the MDT reports is studied and the results suggest that RF fingerprinting can provide a quite detailed location estimation in dense heterogeneous networks. In addition, self-optimization of the mobility state estimation parameters is studied in heterogeneous LTE networks and the results suggest that by gathering MDT measurements and constructing statistical velocity profiles, MSE parameters can be adjusted autonomously, thus resulting in reasonably good classification accuracy. The overall outcome of the thesis is as follows. By automating the classification of the measurement reports between certain problems, network engineers can acquire knowledge about the root causes of the performance degradation in the networks. This saves time and resources and results in a faster decision making process. Due to the faster decision making process the duration of network breaks become shorter and the quality of the network is improved. By taking into account the geographical locations of the anomalous field measurements in the network performance analysis, finer granularity for estimating the location of the problem areas can be achieved. This can further improve the operational decision making that guides the corresponding actions for example, where to start the network optimization. Moreover, by automating the time and resource consuming task of tuning the mobility state estimation parameters, operators can enhance the mobility performance of the high velocity UEs in heterogeneous radio networks in a cost-efficient and backward compatible manner

    Airport connectivity optimization for 5G ultra-dense networks

    Get PDF
    The rapid increase of air traffic demand and complexity of radio access network motivate developing scalable wireless communications by adopting system intelligence. The lack of adaptive reconfiguration in radio transmission systems may cause dramatic impacts on the traffic management concerning congestion and demand-capacity imbalances driving the industry to jointly access licensed and unlicensed bands for improved airport connectivity. Therefore, intelligent system is embedded into fifth generation (5G) ultra-dense networks (UDNs) to provision dense and irregular deployments that maintain extended coverage and also to improve the energy-efficiency for the entire airport network providing high speed services. To define the technical aspects of this solution, this paper addresses new intelligent technique that configures the coverage and capacity factors of radio access network considering the changes in air traffic demands. This technique is analysed through mathematical models that employ power consumption constraints to support dynamic traffic control requirements to improve the overall network capacity. The presented problem is formulated and exactly solved for medium or large airport air transportation network. The power optimization problem is solved using linear programming with careful consideration to latency and energy efficiency factors. Specifically, an intelligent pilot power method is adopted to maintain the connectivity throughout multi-interface technologies by assuming minimum power requirements. Numerical and system-level analysis are conducted to validate the performance of the proposed schemes for both licenced macrocell Long-Term Evolution (LTE) and unlicensed wireless fidelity (WiFi) topologies. Finally, the insights of problem modelling with intelligent techniques provide significant advantages at reasonable complexity and brings the great opportunity to improve the airport network capacit

    A New Paradigm for Proactive Self-Healing in Future Self-Organizing Mobile Cellular Networks

    Get PDF
    Mobile cellular network operators spend nearly a quarter of their revenue on network management and maintenance. Remarkably, a significant proportion of that budget is spent on resolving outages that degrade or disrupt cellular services. Historically, operators have mainly relied on human expertise to identify, diagnose and resolve such outages while also compensating for them in the short-term. However, with ambitious quality of experience expectations from 5th generation and beyond mobile cellular networks spurring research towards technologies such as ultra-dense heterogeneous networks and millimeter wave spectrum utilization, discovering and compensating coverage lapses in future networks will be a major challenge. Numerous studies have explored heuristic, analytical and machine learning-based solutions to autonomously detect, diagnose and compensate cell outages in legacy mobile cellular networks, a branch of research known as self-healing. This dissertation focuses on self-healing techniques for future mobile cellular networks, with special focus on outage detection and avoidance components of self-healing. Network outages can be classified into two primary types: 1) full and 2) partial. Full outages result from failed soft or hard components of network entities while partial outages are generally a consequence of parametric misconfiguration. To this end, chapter 2 of this dissertation is dedicated to a detailed survey of research on detecting, diagnosing and compensating full outages as well as a detailed analysis of studies on proactive outage avoidance schemes and their challenges. A key observation from the analysis of the state-of-the-art outage detection techniques is their dependence on full network coverage data, susceptibility to noise or randomness in the data and inability to characterize outages in both spacial domain and temporal domain. To overcome these limitations, chapters 3 and 4 present two unique and novel outage detection techniques. Chapter 3 presents an outage detection technique based on entropy field decomposition which combines information field theory and entropy spectrum pathways theory and is robust to noise variance. Chapter 4 presents a deep learning neural network algorithm which is robust to data sparsity and compares it with entropy field decomposition and other state-of-the-art machine learning-based outage detection algorithms including support vector machines, K-means clustering, independent component analysis and deep auto-encoders. Based on the insights obtained regarding the impact of partial outages, chapter 5 presents a complete framework for 5th generation and beyond mobile cellular networks that is designed to avoid partial outages caused by parametric misconfiguration. The power of the proposed framework is demonstrated by leveraging it to design a solution that tackles one of the most common problems associated with ultra-dense heterogeneous networks, namely imbalanced load among small and macro cells, and poor resource utilization as a consequence. The optimization problem is formulated as a function of two hard parameters namely antenna tilt and transmit power, and a soft parameter, cell individual offset, that affect the coverage, capacity and load directly. The resulting solution is a combination of the otherwise conflicting coverage and capacity optimization and load balancing self-organizing network functions
    • …
    corecore