5 research outputs found

    Probability of symbol error for MPSK, MDPSK and noncoherent MPSK with MRC and SC space diversity in Nakagami-m fading channel

    Get PDF
    This paper derives analytically some simple closed form expressions for the average symbol error rate (SER) of M-ary phase shift keying (MPSK), M-ary differential phase shift keying (MDPSK) and noncoherent M-ary frequency shift keying (MFSK) over a Nakagami-m (1960) fading channel with L-fold maximal ratio combining (MRC) and selection combining (SC) space diversity reception. Numerical results demonstrate the error performance improvement by employing MRC and SC diversity reception in the above communications systems and show that MRC improves the error performance more significantly than does simple SC.published_or_final_versio

    Some fundamental issues in receiver design and performance analysis for wireless communication

    Get PDF
    Ph.DDOCTOR OF PHILOSOPH

    Performance evaluation of communication systems with transmit diversity

    Get PDF
    Transmit diversity is a key technique to combat fading with multiple transmit antennae for next-generation wireless communication systems. Space-time block code (STBC) is a main component of this technique. This dissertation consists of four parts: the first three discuss performance evaluation of STBCs in various circumstances, the fourth outlines a novel differential scheme with full transmit diversity. In the first part, closed-form expressions for the bit error rate (BER) are derived for STBC based on Alamouti\u27s scheme and utilizing M-ary phase shift keying (MPSK) modulation. The analysis is carried out for a slow, flat Rayleigh fading channel with coherent detection and with non-coherent differential encoding/decoding. The BER expression for coherent detection is exact. But for differential detection it is an approximation appropriate for a high signal-to-noise ratio. Numerical results are provided for analysis and simulations for BPSK and QPSK modulations. A signal-to-noise ratio loss of approximately 3 dB always occurs with conventional differential detection for STBC compared to coherent detection. In the second part of this dissertation, a multiple-symbol differential detection (MSDD) technique is proposed for MPSK STBCs, which greatly reduces this performance loss by extending the observation interval for decoding. The technique uses maximum likelihood block sequence detection instead of traditional block-by-block detection and is carried out on the slow, flat Rayleigh fading channel. A generalized decision metric for an observation interval of N blocks is derived. It is shown that for a moderate number of blocks, MSDD provides more than 1.0 dB performance improvement corresponding to conventional differential detection. In addition, a closed-form pairwise error probability for differential BPSI( STBC is derived for an observation interval of N blocks, and an approximate BER is obtained to evaluate the performance. In the third part, the BER performance of STBC over a spatio-temporal correlated channel with coherent and noncoherent detection is illustrated, where a general space-time correlation model is utilized. The simulation results demonstrate that spatial correlation negatively effects the performance of the STBC scheme with differential detection but temporal correlation positively impacts it. However, with coherent detection, spatial correlation still has negative effect on the performance but temporal correlation has no impact on it. In the final part of this dissertation, a differential detection scheme for DS/CDMA MIMO link is presented. The transmission provides for full transmit and receive diversity gain using a simple detection scheme, which is a natural extension of differential detection combined with an orthogonal transmit diversity (OTD) approach. A capacity analysis for this scheme is illustrated

    Proceedings of the Fifth International Mobile Satellite Conference 1997

    Get PDF
    Satellite-based mobile communications systems provide voice and data communications to users over a vast geographic area. The users may communicate via mobile or hand-held terminals, which may also provide access to terrestrial communications services. While previous International Mobile Satellite Conferences have concentrated on technical advances and the increasing worldwide commercial activities, this conference focuses on the next generation of mobile satellite services. The approximately 80 papers included here cover sessions in the following areas: networking and protocols; code division multiple access technologies; demand, economics and technology issues; current and planned systems; propagation; terminal technology; modulation and coding advances; spacecraft technology; advanced systems; and applications and experiments
    corecore