1,032 research outputs found

    N-ary Relation Extraction using Graph State LSTM

    Full text link
    Cross-sentence nn-ary relation extraction detects relations among nn entities across multiple sentences. Typical methods formulate an input as a \textit{document graph}, integrating various intra-sentential and inter-sentential dependencies. The current state-of-the-art method splits the input graph into two DAGs, adopting a DAG-structured LSTM for each. Though being able to model rich linguistic knowledge by leveraging graph edges, important information can be lost in the splitting procedure. We propose a graph-state LSTM model, which uses a parallel state to model each word, recurrently enriching state values via message passing. Compared with DAG LSTMs, our graph LSTM keeps the original graph structure, and speeds up computation by allowing more parallelization. On a standard benchmark, our model shows the best result in the literature.Comment: EMNLP 18 camera read

    Using Neural Networks for Relation Extraction from Biomedical Literature

    Full text link
    Using different sources of information to support automated extracting of relations between biomedical concepts contributes to the development of our understanding of biological systems. The primary comprehensive source of these relations is biomedical literature. Several relation extraction approaches have been proposed to identify relations between concepts in biomedical literature, namely, using neural networks algorithms. The use of multichannel architectures composed of multiple data representations, as in deep neural networks, is leading to state-of-the-art results. The right combination of data representations can eventually lead us to even higher evaluation scores in relation extraction tasks. Thus, biomedical ontologies play a fundamental role by providing semantic and ancestry information about an entity. The incorporation of biomedical ontologies has already been proved to enhance previous state-of-the-art results.Comment: Artificial Neural Networks book (Springer) - Chapter 1

    Graph Neural Networks with Generated Parameters for Relation Extraction

    Full text link
    Recently, progress has been made towards improving relational reasoning in machine learning field. Among existing models, graph neural networks (GNNs) is one of the most effective approaches for multi-hop relational reasoning. In fact, multi-hop relational reasoning is indispensable in many natural language processing tasks such as relation extraction. In this paper, we propose to generate the parameters of graph neural networks (GP-GNNs) according to natural language sentences, which enables GNNs to process relational reasoning on unstructured text inputs. We verify GP-GNNs in relation extraction from text. Experimental results on a human-annotated dataset and two distantly supervised datasets show that our model achieves significant improvements compared to baselines. We also perform a qualitative analysis to demonstrate that our model could discover more accurate relations by multi-hop relational reasoning
    corecore