18 research outputs found

    Fast hybrid Karatsuba multiplier for Type II pentanomials

    Get PDF
    We continue the study of Mastrovito form of Karatsuba multipliers under the shifted polynomial basis (SPB), recently introduced by Li et al. (IEEE TC (2017)). A Mastrovito-Karatsuba (MK) multiplier utilizes the Karatsuba algorithm (KA) to optimize polynomial multiplication and the Mastrovito approach to combine it with the modular reduction. The authors developed a MK multiplier for all trinomials, which obtain a better space and time trade-off compared with previous non-recursive Karatsuba counterparts. Based on this work, we make two types of contributions in our paper. FORMULATION. We derive a new modular reduction formulation for constructing Mastrovito matrix associated with Type II pentanomial. This formula can also be applied to other special type of pentanomials, e.g. Type I pentanomial and Type C.1 pentanomial. Through related formulations, we demonstrate that Type I pentanomial is less efficient than Type II one because of a more complicated modular reduction under the same SPB; conversely, Type C.1 pentanomial is as good as Type II pentanomial under an alternative generalized polynomial basis (GPB). EXTENSION. We introduce a new MK multiplier for Type II pentanomial. It is shown that our proposal is only one TXT_X slower than the fastest bit-parallel multipliers for Type II pentanomial, but its space complexity is roughly 3/4 of those schemes, where TXT_X is the delay of one 2-input XOR gate. To the best of our knowledge, it is the first time for hybrid multiplier to achieve such a time delay bound

    Efficient GF(p m ) Arithmetic Architectures for Cryptographic Applications

    Full text link
    Recently, there has been a lot of interest on cryptographic applications based on fields OF(p"), for p > 2. This contribution presents OF(p TM) multipliers architectures, where p is odd. We present designs which trade area for performance based on the number of coefficients that the multiplier processes at one time. Families of irreducible polynomials are introduced to reduce the complexity of the modulo reduction operation and, thus, improved the efficiency of the multiplier. We, then, specialize to fields OF(3 TM) and provide the first cubing architecture pre- sented in the literature. We synthesize our architectures for the special case of OF(397) on the XCV1000-8-FG1156 and XC2VP20-7-FF1156 FPGAs and provide area/performance numbers and comparisons to previous OF(3 TM) and OF(2 TM) implementations. Finally, we provide tables of irreducible polynomials over OF(3) of degree m with 2 _< m _< 255

    Efficient Algorithms for Finite Fields, with Applications in Elliptic Curve Cryptography

    Get PDF
    This thesis introduces a new tower field representation, optimal tower fields (OTFs), that facilitates efficient finite field operations. The recursive direct inversion method presented for OTFs has significantly lower complexity than the known best method for inversion in optimal extension fields (OEFs), i.e., Itoh-Tsujii\u27s inversion technique. The complexity of OTF inversion algorithm is shown to be O(m^2), significantly better than that of the Itoh-Tsujii algorithm, i.e. O(m^2(log_2 m)). This complexity is further improved to O(m^(log_2 3)) by utilizing the Karatsuba-Ofman algorithm. In addition, it is shown that OTFs are in fact a special class of OEFs and OTF elements may be converted to OEF representation via a simple permutation of the coefficients. Hence, OTF operations may be utilized to achieve the OEF arithmetic operations whenever a corresponding OTF representation exists. While the original OTF multiplication and squaring operations require slightly more additions than their OEF counterparts, due to the free conversion, both OTF operations may be achieved with the complexity of OEF operations. Furthermore, efficient finite field algorithms are introduced which significantly improve OTF multiplication and squaring operations. The OTF inversion algorithm was implemented on the ARM family of processors for a medium and a large sized field whose elements can be represented with 192 and 320 bits, respectively. In the implementation, the new OTF inversion algorithm ran at least six to eight times faster than the known best method for inversion in OEFs, i.e., Itoh-Tsujii inversion technique. According to the implementation results obtained, it is indicated that using the OTF inversion method an elliptic curve scalar point multiplication operation can be performed at least two to three times faster than the known best implementation for the selected fields
    corecore