38 research outputs found

    Towards Natural Control of Artificial Limbs

    Get PDF
    The use of implantable electrodes has been long thought as the solution for a more natural control of artificial limbs, as these offer access to long-term stable and physiologically appropriate sources of control, as well as the possibility to elicit appropriate sensory feedback via neurostimulation. Although these ideas have been explored since the 1960’s, the lack of a long-term stable human-machine interface has prevented the utilization of even the simplest implanted electrodes in clinically viable limb prostheses.In this thesis, a novel human-machine interface for bidirectional communication between implanted electrodes and the artificial limb was developed and clinically implemented. The long-term stability was achieved via osseointegration, which has been shown to provide stable skeletal attachment. By enhancing this technology as a communication gateway, the longest clinical implementation of prosthetic control sourced by implanted electrodes has been achieved, as well as the first in modern times. The first recipient has used it uninterruptedly in daily and professional activities for over one year. Prosthetic control was found to improve in resolution while requiring less muscular effort, as well as to be resilient to motion artifacts, limb position, and environmental conditions.In order to support this work, the literature was reviewed in search of reliable and safe neuromuscular electrodes that could be immediately used in humans. Additional work was conducted to improve the signal-to-noise ratio and increase the amount of information retrievable from extraneural recordings. Different signal processing and pattern recognition algorithms were investigated and further developed towards real-time and simultaneous prediction of limb movements. These algorithms were used to demonstrate that higher functionality could be restored by intuitive control of distal joints, and that such control remains viable over time when using epimysial electrodes. Lastly, the long-term viability of direct nerve stimulation to produce intuitive sensory feedback was also demonstrated.The possibility to permanently and reliably access implanted electrodes, thus making them viable for prosthetic control, is potentially the main contribution of this work. Furthermore, the opportunity to chronically record and stimulate the neuromuscular system offers new venues for the prediction of complex limb motions and increased understanding of somatosensory perception. Therefore, the technology developed here, combining stable attachment with permanent and reliable human-machine communication, is considered by the author as a critical step towards more functional artificial limbs

    Grip control and motor coordination with implanted and surface electrodes while grasping with an osseointegrated prosthetic hand

    Get PDF
    Background: Replacement of a lost limb by an artificial substitute is not yet ideal. Resolution and coordination of motor control approximating that of a biological limb could dramatically improve the functionality of prosthetic devices, and thus reduce the gap towards a suitable limb replacement. Methods: In this study, we investigated the control resolution and coordination exhibited by subjects with transhumeral amputation who were implanted with epimysial electrodes and an osseointegrated interface that provides bidirectional communication in addition to skeletal attachment (e-OPRA Implant System). We assessed control resolution and coordination in the context of routine and delicate grasping using the Pick and Lift and the Virtual Eggs Tests. Performance when utilizing implanted electrodes was compared with the standard-of-care technology for myoelectric prostheses, namely surface electrodes. Results: Results showed that implanted electrodes provide superior controllability over the prosthetic terminal device compared to conventional surface electrodes. Significant improvements were found in the control of the grip force and its reliability during object transfer. However, these improvements failed to increase motor coordination, and surprisingly decreased the temporal correlation between grip and load forces observed with surface electrodes. We found that despite being more functional and reliable, prosthetic control via implanted electrodes still depended highly on visual feedback. Conclusions: Our findings indicate that incidental sensory feedback (visual, auditory, and osseoperceptive in this case) is insufficient for restoring natural grasp behavior in amputees, and support the idea that supplemental tactile sensory feedback is needed to learn and maintain the motor tasks internal model, which could ultimately restore natural grasp behavior in subjects using prosthetic hands

    Towards clinically viable neuromuscular control of bone-anchored prosthetic arms with sensory feedback

    Get PDF
    Promising developments are currently ongoing worldwide in the field of neuroprosthetics and artificial limb control. It is now possible to chronically connect a robotic limb to bone, nerves, and muscles of a human being, and to use the signals sourced from these connections to enable movements of the artificial limb. It is also possible to surgically redirect a nerve, deprived from its original target muscle due to amputation, to a new target in order to restore the original motor functionality. Intelligent signal processing algorithms can now utilize the bioelectric signals gathered from remaining muscles on the stump to decode the motor intention of the amputee, providing an intuitive control interface. Unfortunately, clinical implementations still lag behind the advancements made in research, and the conventional solutions for amputees have remained largely unchanged for decades. More efforts are needed from researchers to close the gap between scientific developments and clinical practices.This thesis ultimately focuses on the intuitive control of a prosthetic upper limb. In the first part of this doctoral project, an embedded system capable of prosthetic control via the processing of bioelectric signals and pattern recognition algorithms was developed. The design included a neurostimulator to provide direct neural feedback modulated by sensory information from artificial sensors. The system was designed towards clinical implementation and its functionality was proven by its use by amputee subjects in daily life. This system was then used during the second part of the doctoral project as a research platform to monitor prosthesis usage and training, machine learning based control algorithms, and neural stimulation paradigms for tactile sensory feedback. Within this work, a novel method for interfacing a multi-grip prosthetic hand to facilitate posture selection via pattern recognition was proposed. Moreover, the need for tactile sensory feedback was investigated in order to restore natural grasping behavior in amputees. Notably, the benefit for motor coordination of somatotopic tactile feedback achieved via direct neural stimulation was demonstrated. The findings and the technology developed during this project open to the clinical use of a new class of prosthetic arms that are directly connected to the neuromusculoskeletal system, intuitively controlled and capable of tactile sensory feedback

    The Use of Skeletal Muscle to Amplify Action Potentials in Transected Peripheral Nerves

    Get PDF
    Upper limb amputees suffer with problems associated with control and attachment of prostheses. Skin-surface electrodes placed over the stump, which detect myoelectric signals, are traditionally used to control hand movements. However, this method is unintuitive, the electrodes lift-off, and signal selectivity can be an issue. One solution to these limitations is to implant electrodes directly on muscles. Another approach is to implant electrodes directly into the nerves that innervate the muscles. A significant challenge with both solutions is the reliable transmission of biosignals across the skin barrier. In this thesis, I investigated the use of implantable muscle electrodes in an ovine model using myoelectrodes in combination with a bone-anchor, acting as a conduit for signal transmission. High-quality readings were obtained which were significantly better than skin-surface electrode readings. I further investigated the effect of electrode configurations to achieve the best signal quality. For direct recording from nerves, I tested the effect of adsorbed endoneural basement membrane proteins on nerve regeneration in vivo using microchannel neural interfaces implanted in rat sciatic nerves. Muscle and nerve signal recordings were obtained and improvements in sciatic nerve function were observed. Direct skeletal fixation of a prosthesis to the amputation stump using a bone-anchor has been proposed as a solution to skin problems associated with traditional socket-type prostheses. However, there remains a concern about the risk of infection between the implant and skin. Achieving a durable seal at this interface is therefore crucial, which formed the final part of the thesis. Bone-anchors were optimised for surface pore size and coatings to facilitate binding of human dermal fibroblasts to optimise skin-implant seal in an ovine model. Implants silanised with Arginine-Glycine-Aspartic Acid experienced significantly increased dermal tissue infiltration. This approach may therefore improve the soft tissue seal, and thus success of bone-anchored implants. By addressing both the way prostheses are attached to the amputation stump, by way of direct skeletal fixation, as well as providing high fidelity biosignals for high-level intuitive prosthetic control, I aim to further the field of limb loss rehabilitation

    Neuromusculoskeletal Arm Prostheses: Personal and Social Implications of Living With an Intimately Integrated Bionic Arm

    Get PDF
    People with limb loss are for the first time living chronically and uninterruptedly with intimately integrated neuromusculoskeletal prostheses. This new generation of artificial limbs are fixated to the skeleton and operated by bidirectionally transferred neural information. This unprecedented level of human–machine integration is bound to have profound psychosocial effects on the individuals living with these prostheses. Here, we examined the psychosociological impact on people as they integrate neuromusculoskeletal prostheses into their bodies and lives. Three people with transhumeral amputations participated in this study, all of whom had been living with neuromusculoskeletal prostheses in their daily lives between 2 and 6 years at the time of the interview. Direct neural sensory feedback had been enabled for 6 months to 2 years. Participants were interviewed about their experiences living with the neuromusculoskeletal prostheses in their home and professional daily lives. We analyzed these interviews to elucidate themes using an interpretive phenomenological approach that regards participants’ own experiences as forms of expertise and knowledge-making. Our participant-generated results indicate that people adapted and integrated the technology into functional and social arenas of daily living, with positive psychosocial effects on self-esteem, self-image, and social relations intimately linked to improved trust of the prostheses. Participants expressed enhanced prosthetic function, increased and more diverse prosthesis use in tasks of daily living, and improved relationships between their prosthesis and phantom limb. Our interviews with patients also generated critiques of the language commonly used to describe human-prosthetic relations, including terms such as “embodiment,” and the need for specificity surrounding the term “natural” with regard to control versus sensory feedback. Experiences living with neuromusculoskeletal prostheses were complex and subject-dependent, and therefore future research should consider human–machine interaction as a relationship that is constantly enacted, negotiated, and deeply contextualized

    Neuromusculoskeletal interfacing of lower limb prostheses

    Get PDF
    The method of bone-anchored attachment of limb prostheses via a percutaneous skeletal extension was developed to circumvent commonly reported problems associated with the conventional method of socket attachment. In addition to the direct structural connection, the percutaneous implant may serve as a conduit for bidirectional communication between muscles and nerves within the residual limb and the prosthesis. Implanted electrodes recording myoelectric activity within the residual limb can be used to infer the user’s movement intent and may thus be used to provide intuitive control of the prosthesis in real time. Sensory feedback from the prosthesis can be provided back to the user by neurostimulation via implanted neural electrodes, thus closing the control loop. Together the skeletal, neural, and muscular interfaces form a neuromusculoskeletal interface. This technology is currently being evaluated in a clinical trial on individuals with upper limb amputation, but it has not yet been used in the lower limb. The aim of this thesis has been to translate the concept of neuromusculoskeletal interfacing to the lower limb. An additional aim has been to reduce the limitations on high impact activities, that exist on current available systems for bone-anchored attachment of limb prostheses. To achieve these aims, a new design of the neuromusculoskeletal interface was developed where the structural capacity was increased with respect to current versions of the implant system to accommodate increased loads for highly active usage by individuals with lower limb amputation. In order to set adequate design requirements, investigations were conducted to determine the load exposure of bone-anchored implant systems during a number of loadbearing activities. Structural verification of the neuromusculoskeletal interface has been performed using numerical simulations as well as physical testing in static and dynamic conditions. The first steps towards clinical implementation of the lower limb neuromusculoskeletal interface have been taken by the development of a clinical research protocol that has been approved by the Swedish Ethical Review Authority

    Self-contained neuromusculoskeletal arm prostheses

    Get PDF
    We report the use of a bone-anchored, self-contained robotic arm with both sensory and motor components over 3 to 7 years in four patients after transhumeral amputation. The implant allowed for bidirectional communication between a prosthetic hand and electrodes implanted in the nerves and muscles of the upper arm and was anchored to the humerus through osseointegration, the process in which bone cells attach to an artificial surface without formation of fibrous tissue. Use of the device did not require formal training and depended on the intuitive intent of the user to activate movement and sensory feedback from the prosthesis. Daily use resulted in increasing sensory acuity and effectiveness in work and other activities of daily life

    Neurostimulation artifact removal for implantable sensors improves signal clarity and decoding of motor volition

    Get PDF
    As the demand for prosthetic limbs with reliable and multi-functional control increases, recent advances in myoelectric pattern recognition and implanted sensors have proven considerably advantageous. Additionally, sensory feedback from the prosthesis can be achieved via stimulation of the residual nerves, enabling closed-loop control over the prosthesis. However, this stimulation can cause interfering artifacts in the electromyographic (EMG) signals which deteriorate the reliability and function of the prosthesis. Here, we implement two real-time stimulation artifact removal algorithms, Template Subtraction (TS) and epsilon-Normalized Least Mean Squares (epsilon-NLMS), and investigate their performance in offline and real-time myoelectric pattern recognition in two transhumeral amputees implanted with nerve cuff and EMG electrodes. We show that both algorithms are capable of significantly improving signal-to-noise ratio (SNR) and offline pattern recognition accuracy of artifact-corrupted EMG signals. Furthermore, both algorithms improved real-time decoding of motor intention during active neurostimulation. Although these outcomes are dependent on the user-specific sensor locations and neurostimulation settings, they nonetheless represent progress toward bi-directional neuromusculoskeletal prostheses capable of multifunction control and simultaneous sensory feedback

    Patterned Stimulation of Peripheral Nerves Produces Natural Sensations With Regards to Location but Not Quality

    Get PDF
    Sensory feedback is crucial for dexterous manipulation and sense of ownership. Electrical stimulation of severed afferent fibers due to an amputation elicits referred sensations in the missing limb. However, these sensations are commonly reported with a concurrent “electric” or “tingling” character (paresthesia). In this paper, we examined the effect of modulating different pulse parameters on the quality of perceived sensations. Three subjects with above-elbow amputation were implanted with cuff electrodes and stimulated with a train of pulses modulated in either amplitude, width, or frequency (“patterned stimulation”). Pulses were shaped using a slower carrier wave or via quasi-random generation. Subjects were asked to evaluate the natural quality of the resulting sensations using a numeric rating scale. We found that the location of the percepts was distally referred and somatotopically congruent, but their quality remained largely perceived as artificial despite employing patterned modulation. Sensations perceived as arising from the missing limb are intuitive and natural with respect to their location and, therefore, useful for functional restoration. However, our results indicate that sensory transformation from paresthesia to natural qualia seems to require more than patterned stimulation

    Patterned Stimulation of Peripheral Nerves Produces Natural Sensations with Regards to Location but Not Quality

    Get PDF
    Sensory feedback is crucial for dexterous manipulation and sense of ownership. Electrical stimulation of severed afferent fibers due to an amputation elicits referred sensations in the missing limb. However, these sensations are commonly reported with a concurrent 'electric' or 'tingling' character (paresthesia). In this paper, we examined the effect of modulating different pulse parameters on the quality of perceived sensations. Three subjects with above-elbow amputation were implanted with cuff electrodes and stimulated with a train of pulses modulated in either amplitude, width, or frequency ('patterned stimulation'). Pulses were shaped using a slower carrier wave or via quasi-random generation. Subjects were asked to evaluate the natural quality of the resulting sensations using a numeric rating scale. We found that the location of the percepts was distally referred and somatotopically congruent, but their quality remained largely perceived as artificial despite employing patterned modulation. Sensations perceived as arising from the missing limb are intuitive and natural with respect to their location and, therefore, useful for functional restoration. However, our results indicate that sensory transformation from paresthesia to natural qualia seems to require more than patterned stimulation
    corecore