930 research outputs found

    Introductory programming: a systematic literature review

    Get PDF
    As computing becomes a mainstream discipline embedded in the school curriculum and acts as an enabler for an increasing range of academic disciplines in higher education, the literature on introductory programming is growing. Although there have been several reviews that focus on specific aspects of introductory programming, there has been no broad overview of the literature exploring recent trends across the breadth of introductory programming. This paper is the report of an ITiCSE working group that conducted a systematic review in order to gain an overview of the introductory programming literature. Partitioning the literature into papers addressing the student, teaching, the curriculum, and assessment, we explore trends, highlight advances in knowledge over the past 15 years, and indicate possible directions for future research

    Early Developmental Activities and Computing Proficiency

    Get PDF
    As countries adopt computing education for all pupils from primary school upwards, there are challenging indicators: significant proportions of students who choose to study computing at universities fail the introductory courses, and the evidence for links between formal education outcomes and success in CS is limited. Yet, as we know, some students succeed without prior computing experience. Why is this? <br/><br/> Some argue for an innate ability, some for motivation, some for the discrepancies between the expectations of instructors and students, and some – simply – for how programming is being taught. All agree that becoming proficient in computing is not easy. Our research takes a novel view on the problem and argues that some of that success is influenced by early childhood experiences outside formal education. <br/><br/> In this study, we analyzed over 1300 responses to a multi-institutional and multi-national survey that we developed. The survey captures enjoyment of early developmental activities such as childhood toys, games and pastimes between the ages 0 — 8 as well as later life experiences with computing. We identify unifying features of the computing experiences in later life, and attempt to link these computing experiences to the childhood activities. <br/><br/> The analysis indicates that computing proficiency should be seen from multiple viewpoints, including both skill-level and confidence. It shows that particular early childhood experiences are linked to parts of computing proficiency, namely those related to confidence with problem solving using computing technology. These are essential building blocks for more complex use. We recognize issues in the experimental design that may prevent our data showing a link between early activities and more complex computing skills, and suggest adjustments. Ultimately, it is hoped that this line of research will feed in to early years and primary education, and thereby improve computing education for all

    Using theory to inform capacity-building: Bootstrapping communities of practice in computer science education research

    Get PDF
    In this paper, we describe our efforts in the deliberate creation of a community of practice of researchers in computer science education (CSEd). We understand community of practice in the sense in which Wenger describes it, whereby the community is characterized by mutual engagement in a joint enterprise that gives rise to a shared repertoire of knowledge, artefacts, and practices. We first identify CSEd as a research field in which no shared paradigm exists, and then we describe the Bootstrapping project, its metaphor, structure, rationale, and delivery, as designed to create a community of practice of CSEd researchers. Features of other projects are also outlined that have similar aims of capacity building in disciplinary-specific pedagogic enquiry. A theoretically derived framework for evaluating the success of endeavours of this type is then presented, and we report the results from an empirical study. We conclude with four open questions for our project and others like it: Where is the locus of a community of practice? Who are the core members? Do capacity-building models transfer to other disciplines? Can our theoretically motivated measures of success apply to other projects of the same nature

    Emergence of computing education as a research discipline

    Get PDF
    This thesis investigates the changing nature and status of computing education research (CER) over a number of years, specifically addressing the question of whether computing education can legitimately be considered a research discipline. The principal approach to addressing this question is an examination of the published literature in computing education conferences and journals. A classification system was devised for this literature, one goal of the system being to clearly identify some publications as research – once a suitable definition of research was established. When the system is applied to a corpus of publications, it becomes possible to determine the proportion of those publications that are classified as research, and thence to detect trends over time and similarities and differences between publication venues. The classification system has been applied to all of the papers over several years in a number of major computing education conferences and journals. Much of the classification was done by the author alone, and the remainder by a team that he formed in order to assess the inter-rater reliability of the classification system. This classification work led to two subsequent projects, led by Associate Professor Judy Sheard and Professor Lauri Malmi, that devised and applied further classification systems to examine the research approaches and methods used in the work reported in computing education publications. Classification of nearly 2000 publications over ranges of 3-10 years uncovers both strong similarities and distinct differences between publication venues. It also establishes clear evidence of a substantial growth in the proportion of research papers over the years in question. These findings are considered in the light of published perspectives on what constitutes a discipline of research, and lead to a confident assertion that computing education can now rightly be considered a discipline of research

    The research teaching nexus in the computing disciplines: a comparative survey

    No full text
    Many institutions make claims in strategy documents and official publications that students will receive an education which is research-led, research-informed, or guided by the scholarship of teaching and learning. Academics who teach regularly experience at first-hand the sometimes conflicting demands of research, teaching and supporting learning. Curricula guidelines are unlikely to help in developing any sophisticated understanding of ways in which research and teaching can be symbiotically applied, since such guidelines most typically deal with the content rather than the educational process experienced by our undergraduates. For these reasons an academic’s understanding of the research teaching nexus is more likely to be informed by their own workaday experience of designing and delivering educational experiences than from an analysis of the students’ perspective. If academics in the computing disciplines are to effectively deliver on their institutional missions to be scholarly, research-led or research-informed in their educational approaches, a clearer understanding of the possible meanings and implications of these terms in the context of the typical computing curricula would be of assistance. This paper presents and analyses the results of a survey conducted at two Universities which sought to identify how far their undergraduate curriculum was informed by research. This data is presented alongside qualitative data gathered from academics which explores their attitudes towards, and understanding of, the various terms commonly used to describe a research-informed approach to education in the computing disciplines

    Teaching and learning in live online classrooms

    Get PDF
    Online presence of information and services is pervasive. Teaching and learning are no exception. Courseware management systems play an important role in enhancing instructional delivery for either traditional day, full-time students or non-traditional evening, party-time adult learners enrolled in online programs. While online course management tools are with no doubt practical, they limit, however, live or synchronous communication to chat rooms, whose discourse has little in common with face-to-face class communication. A more recent trend in online teaching and learning is the adoption and integration of web conferencing tools to enable live online classrooms and recreate the ethos of traditional face-to-face sessions. In this paper we present the experience we have had with the adoption of the LearnLinc® web conferencing tool, an iLinc Communications, Inc. product. We have coupled LearnLinc with Blackboard®, for the online and hybrid computer science courses we offered in the past academic year in the evening undergraduate and graduate computer science programs at Rivier College. Twelve courses, enrolling over 150 students, have used the synchronous online teaching capabilities of LearnLinc. Students who took courses in the online or hybrid format could experience a comparable level of interaction, participation, and collaboration as in traditional classes. We solicited student feedback by administering a student survey to over 100 students. The 55% response rate produced the data for this paper\u27s study. We report on the study\u27s findings and show students\u27 rankings of evaluation criteria applied to hybrid and online instructional formats, with or without a web conferencing tool. Our analysis shows that students ranked favorably LearnLinc live sessions added to Blackboard-only online classes. In addition, how they learned in live online classrooms was found to be the closest to the hybrid class experience with regard to teaching practices they perceived as most important to them, such as seeking instructor\u27s assistance, managing time on task, and exercising problem solving skills

    Comparing Programming Self-Esteem of Upper Secondary School Teachers to CS1 Students

    Get PDF
    Teacher self-esteem has been found to impact student learning in a number of non-computing fields. As computing slowly becomes a part of the upper secondary school (high school) curriculum in many countries, instruments designed to measure teachers’ programming self-esteem can help inform classroom practice and processes such as teacher professional development needs. This study examines if there are differences in programming self-esteem (using the Bergin Programming Self-Esteem Instrument) between upper secondary school teachers and CS1 students in Ireland. In addition this study provides evidence of validity when using this instrument (originally developed for CS1 students) to measure upper secondary school teacher programming self-esteem. To test for evidence of validity, we compared the results of the programming self-esteem construct given to upper secondary school teachers (n=130) to a recent study of programming selfesteem among CS1 students (n=693). We found evidence of both reliability and validity with teachers that aligns with the evidence found for the CS1 students, demonstrating utility for use with teacher cohorts. Comparing these findings, teachers reported statistically significantly lower programming self-esteem compared to CS1 students. Interestingly CS1 students identifying as male had a statistically significant higher programming self-esteem than those identifying as female. However, we found no statistically significant difference for teacher gender, unlike previous work. Our results indicate that teacher programming self-esteem should be given consideration in the design and implementation of professional development

    Task-related models for teaching and assessing iteration learning in high school

    Get PDF
    A number of studies report about students’ difficulties with basic flow-control constructs, and specifically with iteration. Although such issues are less explored in the context of pre-tertiary education, this seems to be especially the case for high-school programming learning, where the difficulties concern both the “mechanical” features of the notional machine as well as the logical aspects connected with the constructs, ranging from the implications of loop conditions to a more abstract grasp of the underlying algorithms. For these reasons, the aim of this work is to: i) identifying methodological tools to enhance a comprehensive understanding of the iteration constructs, ii) suggest strategies to teach iterations. We interviewed 20 experienced upper secondary teachers of introductory programming in different kinds of schools. The interviews were mainly aimed at ascertaining teachers’ beliefs about major sources of issues for basic programming concepts and their approach to the teaching and learning of iteration constructs. Once teachers’ perception of students’ difficulties have been identified, we have submitted, to a sample of 164 students, a survey which included both questions on their subjective perception of difficulty and simple tasks probing their understanding of iteration. Data collected from teachers and students confirm that iteration is a central programming concept and indicate that the treatment of conditions and nested constructs are major sources of students’ difficulties with iteration. The interviews allowed us to identify a list of problems that are typically presented by teachers to explain the iterations. Hence, a catalogue of significant program examples has been built to support students’ learning, tasks with characteristics different from those typically presented in class. Based on the outcome of previous steps, a survey to collect related information and good practices from a larger sample of teachers has been designed. Data collected have been analysed distinguishing an orientation towards more conceptual objectives, and one towards more practical objectives. Furthermore, regarding evaluation, a orientation focused on process-based assessment and another on product-based assessment. Finally, based on the outcome of previous students’ survey and drawing from the proposed examples catalogue, we have designed and submitted a new students’ survey, composed of a set of small tasks, or tasklets, to investigate in more depth on high-school students’ understanding of iteration in terms of code reading abilities. The chosen tasklets covered the different topics: technical program feature, correlation between tracing effort and abstraction, the role of flow-charts, students’ perception of self-confidence concerning high-level thinking skills.A number of studies report about students’ difficulties with basic flow-control constructs, and specifically with iteration. Although such issues are less explored in the context of pre-tertiary education, this seems to be especially the case for high-school programming learning, where the difficulties concern both the “mechanical” features of the notional machine as well as the logical aspects connected with the constructs, ranging from the implications of loop conditions to a more abstract grasp of the underlying algorithms. For these reasons, the aim of this work is to: i) identifying methodological tools to enhance a comprehensive understanding of the iteration constructs, ii) suggest strategies to teach iterations. We interviewed 20 experienced upper secondary teachers of introductory programming in different kinds of schools. The interviews were mainly aimed at ascertaining teachers’ beliefs about major sources of issues for basic programming concepts and their approach to the teaching and learning of iteration constructs. Once teachers’ perception of students’ difficulties have been identified, we have submitted, to a sample of 164 students, a survey which included both questions on their subjective perception of difficulty and simple tasks probing their understanding of iteration. Data collected from teachers and students confirm that iteration is a central programming concept and indicate that the treatment of conditions and nested constructs are major sources of students’ difficulties with iteration. The interviews allowed us to identify a list of problems that are typically presented by teachers to explain the iterations. Hence, a catalogue of significant program examples has been built to support students’ learning, tasks with characteristics different from those typically presented in class. Based on the outcome of previous steps, a survey to collect related information and good practices from a larger sample of teachers has been designed. Data collected have been analysed distinguishing an orientation towards more conceptual objectives, and one towards more practical objectives. Furthermore, regarding evaluation, a orientation focused on process-based assessment and another on product-based assessment. Finally, based on the outcome of previous students’ survey and drawing from the proposed examples catalogue, we have designed and submitted a new students’ survey, composed of a set of small tasks, or tasklets, to investigate in more depth on high-school students’ understanding of iteration in terms of code reading abilities. The chosen tasklets covered the different topics: technical program feature, correlation between tracing effort and abstraction, the role of flow-charts, students’ perception of self-confidence concerning high-level thinking skills

    An International Pilot Study of K-12 Teachers’Computer Science Self-Esteem

    Get PDF
    Computer Science (CS) is a new subject area for many K-12 teachersaround the world, requiring new disciplinary knowledge and skills.Teacher social-behavioral factors (e.g. self-esteem) have been foundto impact learning and teaching, and a key part of CS curriculumimplementation will need to ensure teachers feel confident to de-liver CS. However, studies about CS teacher self-esteem are lacking.This paper presents an analysis of publicly available data (n=219)from a pilot study using a Teacher CS Self-Esteem scale. Analy-sis revealed significant differences, including 1) females reportedsignificantly lower CS self-esteem than males, 2) primary teachersreported lower levels of CS self-esteem than secondary teachers, 3)those with no CS teaching experience reported significantly lowerCS self-esteem, 4) teachers with 0-3 years experience had a neg-ative CS self-esteem, but after four years, teachers had a positiveCS self-esteem, and 5) teachers who lived further from metropol-itan areas and in some countries reported lower CS self-esteem.These initial findings suggest a pressing need for future researchto look further into teacher CS self-esteem to inform teacher CSprofessional development
    • …
    corecore