34 research outputs found

    A Survey on Security and Privacy of 5G Technologies: Potential Solutions, Recent Advancements, and Future Directions

    Get PDF
    Security has become the primary concern in many telecommunications industries today as risks can have high consequences. Especially, as the core and enable technologies will be associated with 5G network, the confidential information will move at all layers in future wireless systems. Several incidents revealed that the hazard encountered by an infected wireless network, not only affects the security and privacy concerns, but also impedes the complex dynamics of the communications ecosystem. Consequently, the complexity and strength of security attacks have increased in the recent past making the detection or prevention of sabotage a global challenge. From the security and privacy perspectives, this paper presents a comprehensive detail on the core and enabling technologies, which are used to build the 5G security model; network softwarization security, PHY (Physical) layer security and 5G privacy concerns, among others. Additionally, the paper includes discussion on security monitoring and management of 5G networks. This paper also evaluates the related security measures and standards of core 5G technologies by resorting to different standardization bodies and provide a brief overview of 5G standardization security forces. Furthermore, the key projects of international significance, in line with the security concerns of 5G and beyond are also presented. Finally, a future directions and open challenges section has included to encourage future research.European CommissionNational Research Tomsk Polytechnic UniversityUpdate citation details during checkdate report - A

    Security for network services delivery of 5G enabled device-to-device communications mobile network

    Get PDF
    The increase in mobile traffic led to the development of Fifth Generation (5G) mobile network. 5G will provide Ultra Reliable Low Latency Communication (URLLC), Massive Machine Type Communication (mMTC), enhanced Mobile Broadband (eMBB). Device-to-Device (D2D) communications will be used as the underlaying technology to offload traffic from 5G Core Network (5GC) and push content closer to User Equipment (UE). It will be supported by a variety of Network Service (NS) such as Content-Centric Networking (CCN) that will provide access to other services and deliver content-based services. However, this raises new security and delivery challenges. Therefore, research was conducted to address the security issues in delivering NS in 5G enabled D2D communications network. To support D2D communications in 5G, this thesis introduces a Network Services Delivery (NSD) framework defining an integrated system model. It incorporates Cloud Radio Access Network (C-RAN) architecture, D2D communications, and CCN to support 5G’s objectives in Home Network (HN), roaming, and proximity scenarios. The research explores the security of 5G enabled D2D communications by conducting a comprehensive investigation on security threats. It analyses threats using Dolev Yao (DY) threat model and evaluates security requirements using a systematic approach based on X.805 security framework. Which aligns security requirements with network connectivity, service delivery, and sharing between entities. This analysis highlights the need for security mechanisms to provide security to NSD in an integrated system, to specify these security mechanisms, a security framework to address the security challenges at different levels of the system model is introduced. To align suitable security mechanisms, the research defines underlying security protocols to provide security at the network, service, and D2D levels. This research also explores 5G authentication protocols specified by the Third Generation Partnership Project (3GPP) for securing communication between UE and HN, checks the security guarantees of two 3GPP specified protocols, 5G-Authentication and Key Agreement (AKA) and 5G Extensive Authentication Protocol (EAP)-AKA’ that provide primary authentication at Network Access Security (NAC). The research addresses Service Level Security (SLS) by proposing Federated Identity Management (FIdM) model to integrate federated security in 5G, it also proposes three security protocols to provide secondary authentication and authorization of UE to Service Provider (SP). It also addresses D2D Service Security (DDS) by proposing two security protocols that secure the caching and sharing of services between two UEs in different D2D communications scenarios. All protocols in this research are verified for functional correctness and security guarantees using a formal method approach and semi-automated protocol verifier. The research conducts security properties and performance evaluation of the protocols for their effectiveness. It also presents how each proposed protocol provides an interface for an integrated, comprehensive security solution to secure communications for NSD in a 5G enabled D2D communications network. The main contributions of this research are the design and formal verification of security protocols. Performance evaluation is supplementary

    Security in Distributed, Grid, Mobile, and Pervasive Computing

    Get PDF
    This book addresses the increasing demand to guarantee privacy, integrity, and availability of resources in networks and distributed systems. It first reviews security issues and challenges in content distribution networks, describes key agreement protocols based on the Diffie-Hellman key exchange and key management protocols for complex distributed systems like the Internet, and discusses securing design patterns for distributed systems. The next section focuses on security in mobile computing and wireless networks. After a section on grid computing security, the book presents an overview of security solutions for pervasive healthcare systems and surveys wireless sensor network security

    Journal of Telecommunications and Information Technology, 2008, nr 2

    Get PDF
    kwartalni

    Authentication schemes for Smart Mobile Devices: Threat Models, Countermeasures, and Open Research Issues

    Get PDF
    The file attached to this record is the author's final peer reviewed version. The Publisher's final version can be found by following the DOI link.This paper presents a comprehensive investigation of authentication schemes for smart mobile devices. We start by providing an overview of existing survey articles published in the recent years that deal with security for mobile devices. Then, we give a classification of threat models in smart mobile devices in five categories, including, identity-based attacks, eavesdropping-based attacks, combined eavesdropping and identity-based attacks, manipulation-based attacks, and service-based attacks. This is followed by a description of multiple existing threat models. We also provide a classification of countermeasures into four types of categories, including, cryptographic functions, personal identification, classification algorithms, and channel characteristics. According to the characteristics of the countermeasure along with the authentication model iteself, we categorize the authentication schemes for smart mobile devices in four categories, namely, 1) biometric-based authentication schemes, 2) channel-based authentication schemes, 3) factors-based authentication schemes, and 4) ID-based authentication schemes. In addition, we provide a taxonomy and comparison of authentication schemes for smart mobile devices in form of tables. Finally, we identify open challenges and future research directions

    Cyber Security of Critical Infrastructures

    Get PDF
    Critical infrastructures are vital assets for public safety, economic welfare, and the national security of countries. The vulnerabilities of critical infrastructures have increased with the widespread use of information technologies. As Critical National Infrastructures are becoming more vulnerable to cyber-attacks, their protection becomes a significant issue for organizations as well as nations. The risks to continued operations, from failing to upgrade aging infrastructure or not meeting mandated regulatory regimes, are considered highly significant, given the demonstrable impact of such circumstances. Due to the rapid increase of sophisticated cyber threats targeting critical infrastructures with significant destructive effects, the cybersecurity of critical infrastructures has become an agenda item for academics, practitioners, and policy makers. A holistic view which covers technical, policy, human, and behavioural aspects is essential to handle cyber security of critical infrastructures effectively. Moreover, the ability to attribute crimes to criminals is a vital element of avoiding impunity in cyberspace. In this book, both research and practical aspects of cyber security considerations in critical infrastructures are presented. Aligned with the interdisciplinary nature of cyber security, authors from academia, government, and industry have contributed 13 chapters. The issues that are discussed and analysed include cybersecurity training, maturity assessment frameworks, malware analysis techniques, ransomware attacks, security solutions for industrial control systems, and privacy preservation methods

    Security and Privacy for Modern Wireless Communication Systems

    Get PDF
    The aim of this reprint focuses on the latest protocol research, software/hardware development and implementation, and system architecture design in addressing emerging security and privacy issues for modern wireless communication networks. Relevant topics include, but are not limited to, the following: deep-learning-based security and privacy design; covert communications; information-theoretical foundations for advanced security and privacy techniques; lightweight cryptography for power constrained networks; physical layer key generation; prototypes and testbeds for security and privacy solutions; encryption and decryption algorithm for low-latency constrained networks; security protocols for modern wireless communication networks; network intrusion detection; physical layer design with security consideration; anonymity in data transmission; vulnerabilities in security and privacy in modern wireless communication networks; challenges of security and privacy in node–edge–cloud computation; security and privacy design for low-power wide-area IoT networks; security and privacy design for vehicle networks; security and privacy design for underwater communications networks

    systems-theoretic security model for large scale, complex systems applied to the US air transportation system

    Get PDF
    Thesis (S.M.)--Massachusetts Institute of Technology, Engineering Systems Division, 2007.This electronic version was submitted by the student author. The certified thesis is available in the Institute Archives and Special Collections.Includes bibliographical references (p. 129-132).Classical risk-based or game-theoretic security models rely on assumptions from reliability theory and rational expectations economics that are not applicable to security threats. Additionally, these models suffer from serious deficiencies when they are applied to software-intensive, socio-technical systems. Recent work by Leveson in the area of system safety engineering has led to the development of a new accident model for system safety that acknowledges the dynamic complexity of accidents. Systems-Theoretic Accident Models and Processes (STAMP) applies principles from control theory to enforce constraints on hazards and thereby prevent accidents. Appreciating the similarities between safety and security while still acknowledging the differences, this thesis extends STAMP to security problems. In particular, it is applied to identify and mitigate the threats that could emerge in critical infrastructures such as the Air Transportation System. Furthermore, recommendations are provided to assist systems engineers and policy makers in securely transitioning to the Next Generation Air Transportation System (NGATS).by Joseph R. Laracy.S.M

    Security techniques for sensor systems and the Internet of Things

    Get PDF
    Sensor systems are becoming pervasive in many domains, and are recently being generalized by the Internet of Things (IoT). This wide deployment, however, presents significant security issues. We develop security techniques for sensor systems and IoT, addressing all security management phases. Prior to deployment, the nodes need to be hardened. We develop nesCheck, a novel approach that combines static analysis and dynamic checking to efficiently enforce memory safety on TinyOS applications. As security guarantees come at a cost, determining which resources to protect becomes important. Our solution, OptAll, leverages game-theoretic techniques to determine the optimal allocation of security resources in IoT networks, taking into account fixed and variable costs, criticality of different portions of the network, and risk metrics related to a specified security goal. Monitoring IoT devices and sensors during operation is necessary to detect incidents. We design Kalis, a knowledge-driven intrusion detection technique for IoT that does not target a single protocol or application, and adapts the detection strategy to the network features. As the scale of IoT makes the devices good targets for botnets, we design Heimdall, a whitelist-based anomaly detection technique for detecting and protecting against IoT-based denial of service attacks. Once our monitoring tools detect an attack, determining its actual cause is crucial to an effective reaction. We design a fine-grained analysis tool for sensor networks that leverages resident packet parameters to determine whether a packet loss attack is node- or link-related and, in the second case, locate the attack source. Moreover, we design a statistical model for determining optimal system thresholds by exploiting packet parameters variances. With our techniques\u27 diagnosis information, we develop Kinesis, a security incident response system for sensor networks designed to recover from attacks without significant interruption, dynamically selecting response actions while being lightweight in communication and energy overhead
    corecore