384 research outputs found

    EEG-based brain-computer interfaces using motor-imagery: techniques and challenges.

    Get PDF
    Electroencephalography (EEG)-based brain-computer interfaces (BCIs), particularly those using motor-imagery (MI) data, have the potential to become groundbreaking technologies in both clinical and entertainment settings. MI data is generated when a subject imagines the movement of a limb. This paper reviews state-of-the-art signal processing techniques for MI EEG-based BCIs, with a particular focus on the feature extraction, feature selection and classification techniques used. It also summarizes the main applications of EEG-based BCIs, particularly those based on MI data, and finally presents a detailed discussion of the most prevalent challenges impeding the development and commercialization of EEG-based BCIs

    Co-adaptive control strategies in assistive Brain-Machine Interfaces

    Get PDF
    A large number of people with severe motor disabilities cannot access any of the available control inputs of current assistive products, which typically rely on residual motor functions. These patients are therefore unable to fully benefit from existent assistive technologies, including communication interfaces and assistive robotics. In this context, electroencephalography-based Brain-Machine Interfaces (BMIs) offer a potential non-invasive solution to exploit a non-muscular channel for communication and control of assistive robotic devices, such as a wheelchair, a telepresence robot, or a neuroprosthesis. Still, non-invasive BMIs currently suffer from limitations, such as lack of precision, robustness and comfort, which prevent their practical implementation in assistive technologies. The goal of this PhD research is to produce scientific and technical developments to advance the state of the art of assistive interfaces and service robotics based on BMI paradigms. Two main research paths to the design of effective control strategies were considered in this project. The first one is the design of hybrid systems, based on the combination of the BMI together with gaze control, which is a long-lasting motor function in many paralyzed patients. Such approach allows to increase the degrees of freedom available for the control. The second approach consists in the inclusion of adaptive techniques into the BMI design. This allows to transform robotic tools and devices into active assistants able to co-evolve with the user, and learn new rules of behavior to solve tasks, rather than passively executing external commands. Following these strategies, the contributions of this work can be categorized based on the typology of mental signal exploited for the control. These include: 1) the use of active signals for the development and implementation of hybrid eyetracking and BMI control policies, for both communication and control of robotic systems; 2) the exploitation of passive mental processes to increase the adaptability of an autonomous controller to the user\u2019s intention and psychophysiological state, in a reinforcement learning framework; 3) the integration of brain active and passive control signals, to achieve adaptation within the BMI architecture at the level of feature extraction and classification

    The evolution of AI approaches for motor imagery EEG-based BCIs

    Full text link
    The Motor Imagery (MI) electroencephalography (EEG) based Brain Computer Interfaces (BCIs) allow the direct communication between humans and machines by exploiting the neural pathways connected to motor imagination. Therefore, these systems open the possibility of developing applications that could span from the medical field to the entertainment industry. In this context, Artificial Intelligence (AI) approaches become of fundamental importance especially when wanting to provide a correct and coherent feedback to BCI users. Moreover, publicly available datasets in the field of MI EEG-based BCIs have been widely exploited to test new techniques from the AI domain. In this work, AI approaches applied to datasets collected in different years and with different devices but with coherent experimental paradigms are investigated with the aim of providing a concise yet sufficiently comprehensive survey on the evolution and influence of AI techniques on MI EEG-based BCI data.Comment: Submitted to Italian Workshop on Artificial Intelligence for Human Machine Interaction (AIxHMI 2022), December 02, 2022, Udine, Ital

    Performance assessment in brain-computer interface-based augmentative and alternative communication

    Full text link
    Abstract A large number of incommensurable metrics are currently used to report the performance of brain-computer interfaces (BCI) used for augmentative and alterative communication (AAC). The lack of standard metrics precludes the comparison of different BCI-based AAC systems, hindering rapid growth and development of this technology. This paper presents a review of the metrics that have been used to report performance of BCIs used for AAC from January 2005 to January 2012. We distinguish between Level 1 metrics used to report performance at the output of the BCI Control Module, which translates brain signals into logical control output, and Level 2 metrics at the Selection Enhancement Module, which translates logical control to semantic control. We recommend that: (1) the commensurate metrics Mutual Information or Information Transfer Rate (ITR) be used to report Level 1 BCI performance, as these metrics represent information throughput, which is of interest in BCIs for AAC; 2) the BCI-Utility metric be used to report Level 2 BCI performance, as it is capable of handling all current methods of improving BCI performance; (3) these metrics should be supplemented by information specific to each unique BCI configuration; and (4) studies involving Selection Enhancement Modules should report performance at both Level 1 and Level 2 in the BCI system. Following these recommendations will enable efficient comparison between both BCI Control and Selection Enhancement Modules, accelerating research and development of BCI-based AAC systems.http://deepblue.lib.umich.edu/bitstream/2027.42/115465/1/12938_2012_Article_658.pd

    Network-based brain computer interfaces: principles and applications

    Full text link
    Brain-computer interfaces (BCIs) make possible to interact with the external environment by decoding the mental intention of individuals. BCIs can therefore be used to address basic neuroscience questions but also to unlock a variety of applications from exoskeleton control to neurofeedback (NFB) rehabilitation. In general, BCI usability critically depends on the ability to comprehensively characterize brain functioning and correctly identify the user s mental state. To this end, much of the efforts have focused on improving the classification algorithms taking into account localized brain activities as input features. Despite considerable improvement BCI performance is still unstable and, as a matter of fact, current features represent oversimplified descriptors of brain functioning. In the last decade, growing evidence has shown that the brain works as a networked system composed of multiple specialized and spatially distributed areas that dynamically integrate information. While more complex, looking at how remote brain regions functionally interact represents a grounded alternative to better describe brain functioning. Thanks to recent advances in network science, i.e. a modern field that draws on graph theory, statistical mechanics, data mining and inferential modelling, scientists have now powerful means to characterize complex brain networks derived from neuroimaging data. Notably, summary features can be extracted from these networks to quantitatively measure specific organizational properties across a variety of topological scales. In this topical review, we aim to provide the state-of-the-art supporting the development of a network theoretic approach as a promising tool for understanding BCIs and improve usability

    EEG-Based Brain-Computer Interfacing via Motor-Imagery: Practical Implementation and Feature Analysis

    Get PDF
    The human brain is the most intriguing and complex signal processing unit ever known to us. A unique characteristic of our brain is its plasticity property, i.e., the ability of neurons to modify their behavior (structure and functionality) in response to environmental diversity. The plasticity property of brain has motivated design of brain-computer interfaces (BCI) to develop an alternative form of communication channel between brain signals and the external world. The BCI systems have several therapeutic applications of significant importance including but not limited to rehabilitation/ assistive systems, rehabilitation robotics, and neuro-prosthesis control. Despite recent advancements in BCIs, such systems are still far from being reliably incorporated within humanmachine inference networks. In this regard, the thesis focuses on Motor Imagery (MI)-based BCI systems with the objective of tackling some key challenges observed in existing solutions. The MI is defined as a cognitive process in which a person imagines performing a movement without peripheral (muscle) activation. At one hand, the thesis focuses on feature extraction, which is one of the most crucial steps for the development of an effective BCI system. In this regard, the thesis proposes a subject-specific filtering framework, referred to as the regularized double-band Bayesian (R-B2B) spectral filtering. The proposed R-B2B framework couples three main feature extraction categories, namely filter-bank solutions, regularized techniques, and optimized Bayesian mechanisms to enhance the overall classification accuracy of the BCI. To further evaluate the effects of deploying optimized subject-specific spectra-spatial filters, it is vital to examine and investigate different aspects of data collection and in particular, effects of the stimuli provided to subjects to trigger MI tasks. The second main initiative of the thesis is to propose an element of experimental design dealing with MI-based BCI systems. In this regard, we have implemented an EEG-based BCI system and constructed a benchmark dataset associated with 10 healthy subjects performing actual movement and MI tasks. To investigate effects of stimulus on the overall achievable performance, four different protocols are designed and implemented via introduction of visual and voice stimuli. Finally, the work investigates effects of adaptive trimming of EEG epochs resulting in an adaptive and subject-specific solution

    Advancing Pattern Recognition Techniques for Brain-Computer Interfaces: Optimizing Discriminability, Compactness, and Robustness

    Get PDF
    In dieser Dissertation formulieren wir drei zentrale Zielkriterien zur systematischen Weiterentwicklung der Mustererkennung moderner Brain-Computer Interfaces (BCIs). Darauf aufbauend wird ein Rahmenwerk zur Mustererkennung von BCIs entwickelt, das die drei Zielkriterien durch einen neuen Optimierungsalgorithmus vereint. Darüber hinaus zeigen wir die erfolgreiche Umsetzung unseres Ansatzes für zwei innovative BCI Paradigmen, für die es bisher keine etablierte Mustererkennungsmethodik gibt

    Improving the Generalisability of Brain Computer Interface Applications via Machine Learning and Search-Based Heuristics

    Get PDF
    Brain Computer Interfaces (BCI) are a domain of hardware/software in which a user can interact with a machine without the need for motor activity, communicating instead via signals generated by the nervous system. These interfaces provide life-altering benefits to users, and refinement will both allow their application to a much wider variety of disabilities, and increase their practicality. The primary method of acquiring these signals is Electroencephalography (EEG). This technique is susceptible to a variety of different sources of noise, which compounds the inherent problems in BCI training data: large dimensionality, low numbers of samples, and non-stationarity between users and recording sessions. Feature Selection and Transfer Learning have been used to overcome these problems, but they fail to account for several characteristics of BCI. This thesis extends both of these approaches by the use of Search-based algorithms. Feature Selection techniques, known as Wrappers use ‘black box’ evaluation of feature subsets, leading to higher classification accuracies than ranking methods known as Filters. However, Wrappers are more computationally expensive, and are prone to over-fitting to training data. In this thesis, we applied Iterated Local Search (ILS) to the BCI field for the first time in literature, and demonstrated competitive results with state-of-the-art methods such as Least Absolute Shrinkage and Selection Operator and Genetic Algorithms. We then developed ILS variants with guided perturbation operators. Linkage was used to develop a multivariate metric, Intrasolution Linkage. This takes into account pair-wise dependencies of features with the label, in the context of the solution. Intrasolution Linkage was then integrated into two ILS variants. The Intrasolution Linkage Score was discovered to have a stronger correlation with the solutions predictive accuracy on unseen data than Cross Validation Error (CVE) on the training set, the typical approach to feature subset evaluation. Mutual Information was used to create Minimum Redundancy Maximum Relevance Iterated Local Search (MRMR-ILS). In this algorithm, the perturbation operator was guided using an existing Mutual Information measure, and compared with current Filter and Wrapper methods. It was found to achieve generally lower CVE rates and higher predictive accuracy on unseen data than existing algorithms. It was also noted that solutions found by the MRMR-ILS provided CVE rates that had a stronger correlation with the accuracy on unseen data than solutions found by other algorithms. We suggest that this may be due to the guided perturbation leading to solutions that are richer in Mutual Information. Feature Selection reduces computational demands and can increase the accuracy of our desired models, as evidenced in this thesis. However, limited quantities of training samples restricts these models, and greatly reduces their generalisability. For this reason, utilisation of data from a wide range of users is an ideal solution. Due to the differences in neural structures between users, creating adequate models is difficult. We adopted an existing state-of-the-art ensemble technique Ensemble Learning Generic Information (ELGI), and developed an initial optimisation phase. This involved using search to transplant instances between user subsets to increase the generalisability of each subset, before combination in the ELGI. We termed this Evolved Ensemble Learning Generic Information (eELGI). The eELGI achieved higher accuracy than user-specific BCI models, across all eight users. Optimisation of the training dataset allowed smaller training sets to be used, offered protection against neural drift, and created models that performed similarly across participants, regardless of neural impairment. Through the introduction and hybridisation of search based algorithms to several problems in BCI we have been able to show improvements in modelling accuracy and efficiency. Ultimately, this represents a step towards more practical BCI systems that will provide life altering benefits to users
    corecore