181 research outputs found

    Effective Video Encoding in Lossless and Near-lossless Modes

    Get PDF

    Entropy-based evaluation of context models for wavelet-transformed images

    Get PDF
    Entropy is a measure of a message uncertainty. Among others aspects, it serves to determine the minimum coding rate that practical systems may attain. This paper defines an entropy-based measure to evaluate context models employed in wavelet-based image coding. The proposed measure is defined considering the mechanisms utilized by modern coding systems. It establishes the maximum performance achievable with each context model. This helps to determine the adequateness of the model under different coding conditions and serves to predict with high precision the coding rate achieved by practical systems. Experimental results evaluate four well-known context models using different types of images, coding rates, and transform strategies. They reveal that, under specific coding conditions, some widely-spread context models may not be as adequate as it is generally thought. The hints provided by this analysis may help to design simpler and more efficient wavelet-based image codecs

    A DWT based perceptual video coding framework: concepts, issues and techniques

    Get PDF
    The work in this thesis explore the DWT based video coding by the introduction of a novel DWT (Discrete Wavelet Transform) / MC (Motion Compensation) / DPCM (Differential Pulse Code Modulation) video coding framework, which adopts the EBCOT as the coding engine for both the intra- and the inter-frame coder. The adaptive switching mechanism between the frame/field coding modes is investigated for this coding framework. The Low-Band-Shift (LBS) is employed for the MC in the DWT domain. The LBS based MC is proven to provide consistent improvement on the Peak Signal-to-Noise Ratio (PSNR) of the coded video over the simple Wavelet Tree (WT) based MC. The Adaptive Arithmetic Coding (AAC) is adopted to code the motion information. The context set of the Adaptive Binary Arithmetic Coding (ABAC) for the inter-frame data is redesigned based on the statistical analysis. To further improve the perceived picture quality, a Perceptual Distortion Measure (PDM) based on human vision model is used for the EBCOT of the intra-frame coder. A visibility assessment of the quantization error of various subbands in the DWT domain is performed through subjective tests. In summary, all these findings have solved the issues originated from the proposed perceptual video coding framework. They include: a working DWT/MC/DPCM video coding framework with superior coding efficiency on sequences with translational or head-shoulder motion; an adaptive switching mechanism between frame and field coding mode; an effective LBS based MC scheme in the DWT domain; a methodology of the context design for entropy coding of the inter-frame data; a PDM which replaces the MSE inside the EBCOT coding engine for the intra-frame coder, which provides improvement on the perceived quality of intra-frames; a visibility assessment to the quantization errors in the DWT domain

    GPU-oriented architecture for an end-to-end image/video codec based on JPEG2000

    Get PDF
    Modern image and video compression standards employ computationally intensive algorithms that provide advanced features to the coding system. Current standards often need to be implemented in hardware or using expensive solutions to meet the real-time requirements of some environments. Contrarily to this trend, this paper proposes an end-to-end codec architecture running on inexpensive Graphics Processing Units (GPUs) that is based on, though not compatible with, the JPEG2000 international standard for image and video compression. When executed in a commodity Nvidia GPU, it achieves real time processing of 12K video. The proposed S/W architecture utilizes four CUDA kernels that minimize memory transfers, use registers instead of shared memory, and employ a double-buffer strategy to optimize the streaming of data. The analysis of throughput indicates that the proposed codec yields results at least 10× superior on average to those achieved with JPEG2000 implementations devised for CPUs, and approximately 4× superior to those achieved with hardwired solutions of the HEVC/H.265 video compression standard

    Técnicas de compresión de imágenes hiperespectrales sobre hardware reconfigurable

    Get PDF
    Tesis de la Universidad Complutense de Madrid, Facultad de Informática, leída el 18-12-2020Sensors are nowadays in all aspects of human life. When possible, sensors are used remotely. This is less intrusive, avoids interferces in the measuring process, and more convenient for the scientist. One of the most recurrent concerns in the last decades has been sustainability of the planet, and how the changes it is facing can be monitored. Remote sensing of the earth has seen an explosion in activity, with satellites now being launched on a weekly basis to perform remote analysis of the earth, and planes surveying vast areas for closer analysis...Los sensores aparecen hoy en día en todos los aspectos de nuestra vida. Cuando es posible, de manera remota. Esto es menos intrusivo, evita interferencias en el proceso de medida, y además facilita el trabajo científico. Una de las preocupaciones recurrentes en las últimas décadas ha sido la sotenibilidad del planeta, y cómo menitoirzar los cambios a los que se enfrenta. Los estudios remotos de la tierra han visto un gran crecimiento, con satélites lanzados semanalmente para analizar la superficie, y aviones sobrevolando grades áreas para análisis más precisos...Fac. de InformáticaTRUEunpu

    Stationary probability model for microscopic parallelism in JPEG2000

    Get PDF
    Parallel processing is key to augmenting the throughput of image codecs. Despite numerous efforts to parallelize wavelet-based image coding systems, most attempts fail at the parallelization of the bitplane coding engine, which is the most computationally intensive stage of the coding pipeline. The main reason for this failure is the causality with which current coding strategies are devised, which assumes that one coefficient is coded after another. This work analyzes the mechanisms employed in bitplane coding and proposes alternatives to enhance opportunities for parallelism. We describe a stationary probability model that, without sacrificing the advantages of current approaches, removes the main obstacle to the parallelization of most coding strategies. Experimental tests evaluate the coding performance achieved by the proposed method in the framework of JPEG2000 when coding different types of images. Results indicate that the stationary probability model achieves similar coding performance, with slight increments or decrements depending on the image type and the desired level of parallelism

    Stationary Probability Model for Microscopic Parallelism in JPEG2000

    Full text link
    corecore