45 research outputs found

    A review of gallium nitride LEDs for multi-gigabit-per-second visible light data communications

    Get PDF
    The field of visible light communications (VLC) has gained significant interest over the last decade, in both fibre and free-space embodiments. In fibre systems, the availability of low cost plastic optical fibre (POF) that is compatible with visible data communications has been a key enabler. In free-space applications, the availability of hundreds of THz of the unregulated spectrum makes VLC attractive for wireless communications. This paper provides an overview of the recent developments in VLC systems based on gallium nitride (GaN) light-emitting diodes (LEDs), covering aspects from sources to systems. The state-of-the-art technology enabling bandwidth of GaN LEDs in the range of >400 MHz is explored. Furthermore, advances in key technologies, including advanced modulation, equalisation, and multiplexing that have enabled free-space VLC data rates beyond 10 Gb/s are also outlined

    Visible Light Communication Survey

    Get PDF

    Indoor Visible Light Communication:A Tutorial and Survey

    Get PDF
    Abstract With the advancement of solid-state devices for lighting, illumination is on the verge of being completely restructured. This revolution comes with numerous advantages and viable opportunities that can transform the world of wireless communications for the better. Solid-state LEDs are rapidly replacing the contemporary incandescent and fluorescent lamps. In addition to their high energy efficiency, LEDs are desirable for their low heat generation, long lifespan, and their capability to switch on and off at an extremely high rate. The ability of switching between different levels of luminous intensity at such a rate has enabled the inception of a new communication technology referred to as visible light communication (VLC). With this technology, the LED lamps are additionally being used for data transmission. This paper provides a tutorial and a survey of VLC in terms of the design, development, and evaluation techniques as well as current challenges and their envisioned solutions. The focus of this paper is mainly directed towards an indoor setup. An overview of VLC, theory of illumination, system receivers, system architecture, and ongoing developments are provided. We further provide some baseline simulation results to give a technical background on the performance of VLC systems. Moreover, we provide the potential of incorporating VLC techniques in the current and upcoming technologies such as fifth-generation (5G), beyond fifth-generation (B5G) wireless communication trends including sixth-generation (6G), and intelligent reflective surfaces (IRSs) among others

    Analysis and design of three-stage concatenated color-shift keying

    No full text
    Visible Light Communication (VLC) relies on abundant unlicensed bandwidth resources. As an attractive high-data-rate modulation scheme designed for VLC, Color Shift Keying (CSK) assisted modulation is analysed. We commence our study from an uncoded M-CSK scheme relying on the joint Maximum Likelihood (ML) Hard-Detection (HD) of three colors, when communicating over an AWGN channel, where both empirical and analytical results are provided. We invoke EXtrinsic Information Transfer (EXIT) charts for designing a Maximum A-posteriori Probability (MAP) based Soft-Detection (SD) aided iterative receiver jointly detecting the three colors. Based on the EXIT characteristics of M-CSK, we design different signal labeling strategies for diverse color constellations and detection schemes, which are capable of achieving a substantially improved Bit Error Ratio (BER) performance. Thus, given a fixed transmission power, a CSK system using our proposed signal labeling is capable of increasing the reliable data transmission distance by about 30%

    Visible Light Communication (VLC)

    Get PDF
    Visible light communication (VLC) using light-emitting diodes (LEDs) or laser diodes (LDs) has been envisioned as one of the key enabling technologies for 6G and Internet of Things (IoT) systems, owing to its appealing advantages, including abundant and unregulated spectrum resources, no electromagnetic interference (EMI) radiation and high security. However, despite its many advantages, VLC faces several technical challenges, such as the limited bandwidth and severe nonlinearity of opto-electronic devices, link blockage and user mobility. Therefore, significant efforts are needed from the global VLC community to develop VLC technology further. This Special Issue, “Visible Light Communication (VLC)”, provides an opportunity for global researchers to share their new ideas and cutting-edge techniques to address the above-mentioned challenges. The 16 papers published in this Special Issue represent the fascinating progress of VLC in various contexts, including general indoor and underwater scenarios, and the emerging application of machine learning/artificial intelligence (ML/AI) techniques in VLC

    Etude et réalisation d'un système de communications par lumière visible (VLC/LiFi). Application au domaine automobile.

    Get PDF
    The scientific problematic of this PhD is centered on the usage of Visible LightCommunications (VLC) in automotive applications. By enabling wireless communication amongvehicles and also with the traffic infrastructure, the safety and efficiency of the transportation canbe substantially increased. Considering the numerous advantages of the VLC technologyencouraged the study of its appropriateness for the envisioned automotive applications, as analternative and/or a complement for the traditional radio frequency based communications.In order to conduct this research, a low-cost VLC system for automotive application wasdeveloped. The proposed system aims to ensure a highly robust communication between a LEDbasedVLC emitter and an on-vehicle VLC receiver. For the study of vehicle to vehicle (V2V)communication, the emitter was developed based on a vehicle backlight whereas for the study ofinfrastructure to vehicle (I2V) communication, the emitter was developed based on a traffic light.Considering the VLC receiver, a central problem in this area is the design of a suitable sensorable to enhance the conditioning of the signal and to avoid disturbances due to the environmentalconditions, issues that are addressed in the thesis. The performances of a cooperative drivingsystem integrating the two components were evaluated as well.The experimental validation of the VLC system was performed in various conditions andscenarios. The results confirmed the performances of the proposed system and demonstrated thatVLC can be a viable technology for the considered applications. Furthermore, the results areencouraging towards the continuations of the work in this domain.La problématique scientifique de cette thèse est centrée sur le développement decommunications par lumière visible (Visible Light Communications - VLC) dans lesapplications automobiles. En permettant la communication sans fil entre les véhicules, ou entreles véhicules et l’infrastructure routière, la sécurité et l'efficacité du transport peuvent êtreconsidérablement améliorées. Compte tenu des nombreux avantages de la technologie VLC,cette solution se présente comme une excellente alternative ou un complément pour lescommunications actuelles plutôt basées sur les technologies radio-fréquences traditionnelles.Pour réaliser ces travaux de recherche, un système VLC à faible coût pour applicationautomobile a été développé. Le système proposé vise à assurer une communication très robusteentre un émetteur VLC à base de LED et un récepteur VLC monté sur un véhicule. Pour l'étudedes communications véhicule à véhicule (V2V), l'émetteur a été développé sur la base d’un pharearrière rouge de voiture, tandis que pour l'étude des communications de l'infrastructure auvéhicule (I2V), l'émetteur a été développé sur la base d'un feu de circulation. Considérant lerécepteur VLC, le problème principal réside autour d’un capteur approprié, en mesured'améliorer le conditionnement du signal et de limiter les perturbations dues des conditionsenvironnementales. Ces différents points sont abordés dans la thèse, d’un point de vue simulationmais également réalisation du prototype.La validation expérimentale du système VLC a été réalisée dans différentes conditions etscénarii. Les résultats démontrent que la VLC peut être une technologie viable pour lesapplications envisagées

    Multiple-input multiple-output visible light communication receivers for high data-rate mobile applications

    Full text link
    Visible light communication (VLC) is an emerging form of optical wireless communication that transmits data by modulating light in the visible spectrum. To meet the growing demand for wireless communication capacity from mobile devices, we investigate multiple-input multiple-output (MIMO) VLC to achieve multiplexing capacity gains and to allow multiple users to simultaneously transmit without disrupting each other. Previous approaches to receive VLC signals have either been unable to simultaneously receive multiple independent signals from multiple transmitters, unable to adapt to moving transmitters and receivers, or unable to sample the received signals fast enough for high-speed VLC. In this dissertation, we develop and evaluate two novel approaches to receive high-speed MIMO VLC signals from mobile transmitters that can be practically scaled to support additional transmitters. The first approach, Token-Based Pixel Selection (TBPS) exploits the redundancy and sparsity of high-resolution transmitter images in imaging VLC receivers to greatly increase the rate at which complementary metal-oxide semiconductor (CMOS) active pixel sensor (APS) image sensors can sample VLC signals though improved signal routing to enable such high-resolution image sensors to capture high-speed VLC signals. We further model the CMOS APS pixel as a linear shift-invariant system, investigate how it scales to support additional transmitters and higher resolutions, and investigate how noise can affect its performance. The second approach, a spatial light modulator (SLM)-based VLC receiver, uses an SLM to dynamically control the resulting wireless channel matrix to enable relatively few photodetectors to reliably receive from multiple transmitters despite their movements. As part of our analysis, we develop a MIMO VLC channel capacity model that accounts for the non-negativity and peak-power constraints of VLC systems to evaluate the performance of the SLM VLC receiver and to facilitate the optimization of the channel matrix through the SLM

    Interference Suppression in Massive MIMO VLC Systems

    Get PDF
    The focus of this dissertation is on the development and evaluation of methods and principles to mitigate interference in multiuser visible light communication (VLC) systems using several transmitters. All components of such a massive multiple-input multiple-output (MIMO) system are considered and transformed into a communication system model, while also paying particular attention to the hardware requirements of different modulation schemes. By analyzing all steps in the communication process, the inter-channel interference between users is identified as the most critical aspect. Several methods of suppressing this kind of interference, i.e. to split the MIMO channel into parallel single channels, are discussed, and a novel active LCD-based interference suppression principle at the receiver side is introduced as main aspect of this work. This technique enables a dynamic adaption of the physical channel: compared to solely software-based or static approaches, the LCD interference suppression filter achieves adaptive channel separation without altering the characteristics of the transmitter lights. This is especially advantageous in dual-use scenarios with illumination requirements. Additionally, external interferers, like natural light or transmitter light sources of neighboring cells in a multicell setting, can also be suppressed without requiring any control over them. Each user's LCD filter is placed in front of the corresponding photodetector and configured in such a way that only light from desired transmitters can reach the detector by setting only the appropriate pixels to transparent, while light from unwanted transmitters remains blocked. The effectiveness of this method is tested and benchmarked against zero-forcing (ZF) precoding in different scenarios and applications by numerical simulations and also verified experimentally in a large MIMO VLC testbed created specifically for this purpose

    Design and implementation of an uplink connection for a light-based IoT node

    Get PDF
    Abstract. In the wake of soaring demand for shrinking radio frequency (RF) spectrum, light-fidelity (LiFi) has been heralded as a solution to accommodate resources for future communication networks. Infrared (IR) and visible light communication (VLC) are meant to be used within LiFi because of numerous advantages. By combining the paradigm of internet of things (IoT) along with LiFi, light-based IoT (LIoT) emerges as a potential enabler of future 6G networks. With tremendous number of interconnected devices, LIoT nodes need to be able to receive and transmit data while being energy autonomous. One of the most promising clean energy sources comes from both natural and artificial light. In addition to providing illumination and energy, light can also be utilized as a robust information carrier. In order to provide bidirectional connectivity to LIoT node, both downlink and uplink have to be taken into consideration. Whereas downlink relies on visible light as a carrier, uplink approach can be engineered freely within specific requirements. With this in mind, this master’s thesis explores possible solutions for providing uplink connectivity. After analysis of possible solutions, the LIoT proof-of-concept was designed, implemented and validated. By incorporating printed solar cell, dedicated energy harvesting unit, power-optimised microcontroller unit (MCU) and light intensity sensor the LIoT node is able to autonomously transmit data using IR
    corecore