307,344 research outputs found

    CRL at Ntcir2

    Full text link
    We have developed systems of two types for NTCIR2. One is an enhenced version of the system we developed for NTCIR1 and IREX. It submitted retrieval results for JJ and CC tasks. A variety of parameters were tried with the system. It used such characteristics of newspapers as locational information in the CC tasks. The system got good results for both of the tasks. The other system is a portable system which avoids free parameters as much as possible. The system submitted retrieval results for JJ, JE, EE, EJ, and CC tasks. The system automatically determined the number of top documents and the weight of the original query used in automatic-feedback retrieval. It also determined relevant terms quite robustly. For EJ and JE tasks, it used document expansion to augment the initial queries. It achieved good results, except on the CC tasks.Comment: 11 pages. Computation and Language. This paper describes our results of information retrieval in the NTCIR2 contes

    Technical Report: A Receding Horizon Algorithm for Informative Path Planning with Temporal Logic Constraints

    Full text link
    This technical report is an extended version of the paper 'A Receding Horizon Algorithm for Informative Path Planning with Temporal Logic Constraints' accepted to the 2013 IEEE International Conference on Robotics and Automation (ICRA). This paper considers the problem of finding the most informative path for a sensing robot under temporal logic constraints, a richer set of constraints than have previously been considered in information gathering. An algorithm for informative path planning is presented that leverages tools from information theory and formal control synthesis, and is proven to give a path that satisfies the given temporal logic constraints. The algorithm uses a receding horizon approach in order to provide a reactive, on-line solution while mitigating computational complexity. Statistics compiled from multiple simulation studies indicate that this algorithm performs better than a baseline exhaustive search approach.Comment: Extended version of paper accepted to 2013 IEEE International Conference on Robotics and Automation (ICRA

    Doodle to Search: Practical Zero-Shot Sketch-based Image Retrieval

    Get PDF
    In this paper, we investigate the problem of zero-shot sketch-based image retrieval (ZS-SBIR), where human sketches are used as queries to conduct retrieval of photos from unseen categories. We importantly advance prior arts by proposing a novel ZS-SBIR scenario that represents a firm step forward in its practical application. The new setting uniquely recognizes two important yet often neglected challenges of practical ZS-SBIR, (i) the large domain gap between amateur sketch and photo, and (ii) the necessity for moving towards large-scale retrieval. We first contribute to the community a novel ZS-SBIR dataset, QuickDraw-Extended, that consists of 330,000 sketches and 204,000 photos spanning across 110 categories. Highly abstract amateur human sketches are purposefully sourced to maximize the domain gap, instead of ones included in existing datasets that can often be semi-photorealistic. We then formulate a ZS-SBIR framework to jointly model sketches and photos into a common embedding space. A novel strategy to mine the mutual information among domains is specifically engineered to alleviate the domain gap. External semantic knowledge is further embedded to aid semantic transfer. We show that, rather surprisingly, retrieval performance significantly outperforms that of state-of-the-art on existing datasets that can already be achieved using a reduced version of our model. We further demonstrate the superior performance of our full model by comparing with a number of alternatives on the newly proposed dataset. The new dataset, plus all training and testing code of our model, will be publicly released to facilitate future researchComment: Oral paper in CVPR 201

    Robust and Fast 3D Scan Alignment using Mutual Information

    Full text link
    This paper presents a mutual information (MI) based algorithm for the estimation of full 6-degree-of-freedom (DOF) rigid body transformation between two overlapping point clouds. We first divide the scene into a 3D voxel grid and define simple to compute features for each voxel in the scan. The two scans that need to be aligned are considered as a collection of these features and the MI between these voxelized features is maximized to obtain the correct alignment of scans. We have implemented our method with various simple point cloud features (such as number of points in voxel, variance of z-height in voxel) and compared the performance of the proposed method with existing point-to-point and point-to- distribution registration methods. We show that our approach has an efficient and fast parallel implementation on GPU, and evaluate the robustness and speed of the proposed algorithm on two real-world datasets which have variety of dynamic scenes from different environments
    • …
    corecore