86 research outputs found

    Sum Rates, Rate Allocation, and User Scheduling for Multi-User MIMO Vector Perturbation Precoding

    Full text link
    This paper considers the multiuser multiple-input multiple-output (MIMO) broadcast channel. We consider the case where the multiple transmit antennas are used to deliver independent data streams to multiple users via vector perturbation. We derive expressions for the sum rate in terms of the average energy of the precoded vector, and use this to derive a high signal-to-noise ratio (SNR) closed-form upper bound, which we show to be tight via simulation. We also propose a modification to vector perturbation where different rates can be allocated to different users. We conclude that for vector perturbation precoding most of the sum rate gains can be achieved by reducing the rate allocation problem to the user selection problem. We then propose a low-complexity user selection algorithm that attempts to maximize the high-SNR sum rate upper bound. Simulations show that the algorithm outperforms other user selection algorithms of similar complexity.Comment: 27 pages with 6 figures and 2 tables. Accepted for publication in IEEE Trans. Wireless Comm

    Resource allocation and feedback in wireless multiuser networks

    Get PDF
    This thesis focuses on the design of algorithms for resource allocation and feedback in wireless multiuser and heterogeneous networks. In particular, three key design challenges expected to have a major impact on future wireless networks are considered: cross-layer scheduling; structured quantization codebook design for MU-MIMO networks with limited feedback; and resource allocation to provide physical layer security. The first design challenge is cross-layer scheduling, where policies are proposed for two network architectures: user scheduling in single-cell multiuser networks aided by a relay; and base station (BS) scheduling in CoMP. These scheduling policies are then analyzed to guarantee satisfaction of three performance metrics: SEP; packet delay; and packet loss probability (PLP) due to buffer overflow. The concept of the Ď„-achievable PLP region is also introduced to explicitly describe the tradeoff in PLP between different users. The second design challenge is structured quantization codebook design in wireless networks with limited feedback, for both MU-MIMO and CoMP. In the MU-MIMO network, two codebook constructions are proposed, which are based on structured transformations of a base codebook. In the CoMP network, a low-complexity construction is proposed to solve the problem of variable codebook dimensions due to changes in the number of coordinated BSs. The proposed construction is shown to have comparable performance with the standard approach based on a random search, while only requiring linear instead of exponential complexity. The final design challenge is resource allocation for physical layer security in MU-MIMO. To guarantee physical layer security, the achievable secrecy sum-rate is explicitly derived for the regularized channel inversion (RCI) precoder. To improve performance, power allocation and precoder design are jointly optimized using a new algorithm based on convex optimization techniques

    Resource allocation and feedback in wireless multiuser networks

    Get PDF
    This thesis focuses on the design of algorithms for resource allocation and feedback in wireless multiuser and heterogeneous networks. In particular, three key design challenges expected to have a major impact on future wireless networks are considered: cross-layer scheduling; structured quantization codebook design for MU-MIMO networks with limited feedback; and resource allocation to provide physical layer security. The first design challenge is cross-layer scheduling, where policies are proposed for two network architectures: user scheduling in single-cell multiuser networks aided by a relay; and base station (BS) scheduling in CoMP. These scheduling policies are then analyzed to guarantee satisfaction of three performance metrics: SEP; packet delay; and packet loss probability (PLP) due to buffer overflow. The concept of the Ď„-achievable PLP region is also introduced to explicitly describe the tradeoff in PLP between different users. The second design challenge is structured quantization codebook design in wireless networks with limited feedback, for both MU-MIMO and CoMP. In the MU-MIMO network, two codebook constructions are proposed, which are based on structured transformations of a base codebook. In the CoMP network, a low-complexity construction is proposed to solve the problem of variable codebook dimensions due to changes in the number of coordinated BSs. The proposed construction is shown to have comparable performance with the standard approach based on a random search, while only requiring linear instead of exponential complexity. The final design challenge is resource allocation for physical layer security in MU-MIMO. To guarantee physical layer security, the achievable secrecy sum-rate is explicitly derived for the regularized channel inversion (RCI) precoder. To improve performance, power allocation and precoder design are jointly optimized using a new algorithm based on convex optimization techniques

    Downlink scheduling and resource allocation for 5G MIMO-multicarrier: OFDM vs FBMC/OQAM

    Get PDF
    OAPA The definition of the next generation of wireless communications, so-called 5G networks, is currently underway. Among many technical decisions, one that is particularly fundamental is the choice of the physical layer modulation format and waveform, an issue for which several alternatives have been proposed. Two of the most promising candidates are: (i) orthogonal frequency division multiple (OFDM), a conservative proposal that builds upon the huge legacy of 4G networks, and (ii) filterbank multicarrier/offset quadrature amplitude modulation (FBMC/OQAM), a progressive approach that in frequency selective channels sacrifices subcarrier orthogonality in lieu of an increased spectral efficiency. The comparative merits of OFDM and FBMC/OQAM have been well investigated over the last few years but mostly, from a purely physical layer point of view and largely neglecting how the physical layer performance translates into user-relevant metrics at the upper-layers. This paper aims at presenting a comprehensive comparison of both modulation formats in terms of practical network indicators such as goodput, delay, fairness and service coverage, and under operational conditions that can be envisaged to be realistic in 5G deployments. To this end, a unifying cross-layer framework is proposed that encompasses the downlink scheduling and resource allocation procedures and that builds upon a model of the queueing process at the data-link control layer and a physical layer abstraction that can be chosen to model either OFDM or FBMC/OQAM. Extensive numerical results conclusively demonstrate that most of the apriori advantages of FBMC/OQAM over OFDM do indeed translate into improved network indicators, that is, the increase in spectral efficiency achieved by FBMC/OQAM makes up for the distortion caused by the loss of orthogonality.Peer ReviewedPostprint (published version

    Multiplexing, scheduling, and multicasting strategies for antenna arrays in wireless networks

    Get PDF
    Thesis (Ph. D.)--Massachusetts Institute of Technology, Dept. of Electrical Engineering and Computer Science, 2002.Includes bibliographical references (p. 167-174).This electronic version was submitted by the student author. The certified thesis is available in the Institute Archives and Special Collections.A transmitter antenna array has the ability to direct data simultaneously to multiple receivers within a wireless network, creating potential for a more integrated view of algorithmic system components. In this thesis, such a perspective informs the design of two system tasks: the scheduling of packets from a number of data streams into groups; and the subsequent spatial multiplexing and encoding of these groups using array processing. We demonstrate how good system designs can help these two tasks reinforce one another, or alternatively enable tradeoffs in complexity between the two. Moreover, scheduling and array processing each benefit from a further awareness of both the fading channel state and certain properties of the data, providing information about key flexibilities, constraints and goals. Our development focuses on techniques that lead to high performance even with very low-complexity receivers. We first consider spatial precoding under simple scheduling and propose several extensions for implementation, such as a unified time-domain precoder that compensates for both cross-channel and intersymbol interfer- ence. We then show how more sophisticated, channel-aware scheduling can reduce the complexity requirements of the array processing. The scheduling algorithms presented are based on the receivers' fading channel realizations and the delay tolerances of the data streams. Finally, we address the multicasting of common data streams in terms of opportunities for reduced redundancy as well as the conflicting objectives inherent in sending to multiple receivers. Our channel-aware extensions of space-time codes for multicasting gain several dB over traditional versions that do not incorporate channel knowledge.by Michael J. Lopez.Ph.D

    Multiplexing, Scheduling, and Multicasting Strategies for Antenna Arrays in Wireless Networks

    Get PDF
    Grant number: CCR-9979363A transmitter antenna array has the ability to direct data simultaneously to multiple receivers within a wireless network, creating potential for a more integrated view of algorithmic system components. In this thesis, such a perspective informs the design of two system tasks: the scheduling of packets from a number of data streams into groups; and the subsequent spatial multiplexing and encoding of these groups using array processing. We demonstrate how good system designs can help these two tasks reinforce one another, or alternatively enable tradeoffs in complexity between the two. Moreover, scheduling and array processing each benefit from a further awareness of both the fading channel state and certain properties of the data, providing information about key flexibilities, constraints and goals. Our development focuses on techniques that lead to high performance even with very low-complexity receivers. We first consider spatial precoding under simple scheduling and propose several extensions for implementation, such as a unified timedomain precoder that compensates for both cross-channel and intersymbol interference. We then show how more sophisticated, channel-aware scheduling can reduce the complexity requirements of the array processing. The scheduling algorithms presented are based on the receivers’ fading channel realizations and the delay tolerances of the data streams. Finally, we address the multicasting of common data streams in terms of opportunities for reduced redundancy as well as the conflicting objectives inherent in sending to multiple receivers. Our channel-aware extensions of space-time codes for multicasting gain several dB over traditional versions that do not incorporate channel knowledge.NSF, HP/MIT Alliance

    A Rank-Constrained Coordinate Ascent Approach to Hybrid Precoding for the Downlink of Wideband Massive (MIMO) Systems

    Get PDF
    © 2023 IEEE. This version of the article has been accepted for publication, after peer review. Personal use of this material is permitted. Permission from IEEE must be obtained for all other uses, in any current or future media, including reprinting/republishing this material for advertising or promotional purposes, creating new collective works, for resale or redistribution to servers or lists, or reuse of any copyrighted component of this work in other works. The Version of Record is available online at: https://doi.org/10.1109/TVT.2023.3293933.[Abstract]: An innovative approach to hybrid analog-digital precoding for the downlink of wideband massive MIMO systems is developed. The proposed solution, termed Rank-Constrained Coordinate Ascent (RCCA), starts seeking the full-digital precoder that maximizes the achievable sum-rate over all the frequency subcarriers while constraining the rank of the overall transmit covariance matrix. The frequency-flat constraint on the analog part of the hybrid precoder and the non-convex nature of the rank constraint are circumvented by transforming the original problem into a more suitable one, where a convenient structure for the transmit covariance matrix is imposed. Such structure makes the resulting full-digital precoder particularly adequate for its posterior analog-digital factorization. An additional problem formulation to determine an appropriate power allocation policy according to the rank constraint is also provided. The numerical results show that the proposed method outperforms baseline solutions even for practical scenarios with high spatial diversity.Xunta de Galicia; ED431C 2020/15Xunta de Galicia; ED431G 2019/01This work has been supported in part by grants ED431C 2020/15 and ED431G 2019/01 (to support the Centro de Investigación de Galicia “CITIC”) funded by Xunta de Galicia and ERDF Galicia 2014-2020, and by grants PID2019-104958RB-C42 (ADELE) and PID2020-118139RB-I00 funded by MCIN/AEI/10.13039/501100011033. The authors thank the Defense University Center at the Spanish Naval Academy (CUD-ENM) for all the support provided for this research

    Air Interface for Next Generation Mobile Communication Networks: Physical Layer Design:A LTE-A Uplink Case Study

    Get PDF
    • …
    corecore