166 research outputs found

    Security and pseudo-anonymity with a cluster-based approach for MANET

    Get PDF
    International audienceIn this paper, we propose an anonymous protocol to secure nodes which have important roles in the network. We focus in the clustering approach to secure the mobile ad hoc networks (MANETs). In each cluster, a confident node is selected to ensure the certification authority (CA) roles; however, the cluster security depends in the security of the CA node. Therefore, we present an anonymous dynamic demilitarized zone (ADDMZ) to protect the CA node identity and to avoid the single point of failure in the cluster. ADDMZ is formed by a set of confident nodes which have a high trust level between them and their goal is to filter the communication between the cluster member node and the CA node. Moreover, we draw one's inspiration from military defence mechanisms such as: camouflage and identity change mechanisms. We present protocol to realize these mechanisms by using the identity based cryptographic from bilinear maps. The security analysis is proposed to discuss the proposed protocols

    Unified architecture of mobile ad hoc network security (MANS) system

    Get PDF
    In this dissertation, a unified architecture of Mobile Ad-hoc Network Security (MANS) system is proposed, under which IDS agent, authentication, recovery policy and other policies can be defined formally and explicitly, and are enforced by a uniform architecture. A new authentication model for high-value transactions in cluster-based MANET is also designed in MANS system. This model is motivated by previous works but try to use their beauties and avoid their shortcomings, by using threshold sharing of the certificate signing key within each cluster to distribute the certificate services, and using certificate chain and certificate repository to achieve better scalability, less overhead and better security performance. An Intrusion Detection System is installed in every node, which is responsible for colleting local data from its host node and neighbor nodes within its communication range, pro-processing raw data and periodically broadcasting to its neighborhood, classifying normal or abnormal based on pro-processed data from its host node and neighbor nodes. Security recovery policy in ad hoc networks is the procedure of making a global decision according to messages received from distributed IDS and restore to operational health the whole system if any user or host that conducts the inappropriate, incorrect, or anomalous activities that threaten the connectivity or reliability of the networks and the authenticity of the data traffic in the networks. Finally, quantitative risk assessment model is proposed to numerically evaluate MANS security

    An Efficient Distributed Group Key Management Using Hierarchical Approach with ECDH and Symmetric Algorithm

    Get PDF
    Ensuring secure communication in an ad hoc network is extremely challenging because of the dynamic nature of the network and the lack of centralized management. For this reason, key management is particularly difficult to implement in such networks. Secure group communication is an increasingly popular research area having received much attention in recent years. Group key management is a fundamental building block for secure group communication systems. We will present an efficient many-to-many group key management protocol in distributed group communication. In this protocol, group members are managed in the hierarchical manner logically. Two kinds of keys are used, asymmetric and symmetric keys. The leaf nodes in the key tree are the asymmetric keys of the corresponding group members and all the intermediate node keys are symmetric keys assigned to each intermediate node. For asymmetric key, a more efficient key agreement will be introduced. To calculate intermediate node keys, members use codes assigned to each intermediate node key tree. Group members calculate intermediate node keys rather than distributed by a sponsor member. The features of this approach are that, no keys are exchanged between existing members at join, and only one key, the group key, is delivered to remaining members at leave. Keywords: Elliptic Curve, Distributed Group Key Management, Hierarchical Key Management, Mobile Ad-hoc network (MANET)

    DSSAM: digitally signed secure acknowledgement method for mobile ad hoc network

    Get PDF
    Mobile ad hoc network (MANET) is an infrastructure-less, self-motivated, arbitrary, self-configuring, rapidly changing, multi-hop network that is self-possessing wireless bandwidth-conscious links without centrally managed router support. In such a network, wireless media is easy to snoop. It is firm to the surety to access any node, easier to insertion of bad elements or attackers for malicious activities in the network. Therefore, security issues become one of the significant considerations for such kind of networks. The deployment of an effective intrusion detection system is important in order to provide protection against various attacks. In this paper, a Digitally Signed Secure Acknowledgement Method (DSSAM) with the use of the RSA digital signature has been proposed and simulated. Three different parameters are considered, namely secure acknowledgment, node authentication, and packet authentication for study. This article observes the DSSAM performance and compares it with two existing standard methods, namely Watchdog and 2-ACK under standard Dynamic Source Routing (DSR) routing environment. In the end, it is noticed that the rate of detection of malicious behaviour is better in the case of the proposed method. However, associated overheads are high. A trade-of between performance and overhead has been considered
    corecore