1,030 research outputs found

    Mutual Authentication and Key Exchange Protocols for Roaming Services in Wireless Mobile Networks

    Full text link

    Security and Privacy Issues in Wireless Mesh Networks: A Survey

    Full text link
    This book chapter identifies various security threats in wireless mesh network (WMN). Keeping in mind the critical requirement of security and user privacy in WMNs, this chapter provides a comprehensive overview of various possible attacks on different layers of the communication protocol stack for WMNs and their corresponding defense mechanisms. First, it identifies the security vulnerabilities in the physical, link, network, transport, application layers. Furthermore, various possible attacks on the key management protocols, user authentication and access control protocols, and user privacy preservation protocols are presented. After enumerating various possible attacks, the chapter provides a detailed discussion on various existing security mechanisms and protocols to defend against and wherever possible prevent the possible attacks. Comparative analyses are also presented on the security schemes with regards to the cryptographic schemes used, key management strategies deployed, use of any trusted third party, computation and communication overhead involved etc. The chapter then presents a brief discussion on various trust management approaches for WMNs since trust and reputation-based schemes are increasingly becoming popular for enforcing security in wireless networks. A number of open problems in security and privacy issues for WMNs are subsequently discussed before the chapter is finally concluded.Comment: 62 pages, 12 figures, 6 tables. This chapter is an extension of the author's previous submission in arXiv submission: arXiv:1102.1226. There are some text overlaps with the previous submissio

    Authenticated wireless roaming via tunnels : making mobile guests feel at home

    Get PDF
    In wireless roaming a mobile device obtains a service from some foreign network while being registered for the similar service at its own home network. However, recent proposals try to keep the service provider role behind the home network and let the foreign network create a tunnel connection through which all service requests of the mobile device are sent to and answered directly by the home network. Such Wireless Roaming via Tunnels (WRT) others several (security) benefits but states also new security challenges on authentication and key establishment, as the goal is not only to protect the end-to-end communication between the tunnel peers but also the tunnel itself. In this paper we formally specify mutual authentication and key establishment goals for WRT and propose an efficient and provably secure protocol that can be used to secure such roaming session. Additionally, we describe some modular protocol extensions to address resistance against DoS attacks, anonymity of the mobile device and unlinkability of its roaming sessions, as well as the accounting claims of the foreign network in commercial scenarios

    Inter-Domain Authentication for Seamless Roaming in Heterogeneous Wireless Networks

    Get PDF
    The convergence of diverse but complementary wireless access technologies and inter-operation among administrative domains have been envisioned as crucial for the next generation wireless networks that will provide support for end-user devices to seamlessly roam across domain boundaries. The integration of existing and emerging heterogeneous wireless networks to provide such seamless roaming requires the design of a handover scheme that provides uninterrupted service continuity while facilitating the establishment of authenticity of the entities involved. The existing protocols for supporting re-authentication of a mobile node during a handover across administrative domains typically involve several round trips to the home domain, and hence introduce long latencies. Furthermore, the existing methods for negotiating roaming agreements to establish inter-domain trust rely on a lengthy manual process, thus, impeding seamless roaming across multiple domains in a truly heterogeneous wireless network. In this thesis, we present a new proof-token based authentication protocol that supports quick re-authentication of a mobile node as it moves to a new foreign domain without involving communication with the home domain. The proposed proof-token based protocol can also support establishment of spontaneous roaming agreements between a pair of domains that do not already have a direct roaming agreement, thus allowing flexible business models to be supported. We describe details of the new authentication architecture, the proposed protocol, which is based on EAP-TLS and compare the proposed protocol with existing protocols

    Secure and Privacy-Preserving Authentication Protocols for Wireless Mesh Networks

    Get PDF
    Wireless mesh networks (WMNs) have emerged as a promising concept to meet the challenges in next-generation wireless networks such as providing flexible, adaptive, and reconfigurable architecture while offering cost-effective solutions to service providers. As WMNs become an increasingly popular replacement technology for last-mile connectivity to the home networking, community and neighborhood networking, it is imperative to design efficient and secure communication protocols for these networks. However, several vulnerabilities exist in currently existing protocols for WMNs. These security loopholes can be exploited by potential attackers to launch attack on WMNs. The absence of a central point of administration makes securing WMNs even more challenging. The broadcast nature of transmission and the dependency on the intermediate nodes for multi-hop communications lead to several security vulnerabilities in WMNs. The attacks can be external as well as internal in nature. External attacks are launched by intruders who are not authorized users of the network. For example, an intruding node may eavesdrop on the packets and replay those packets at a later point of time to gain access to the network resources. On the other hand, the internal attacks are launched by the nodes that are part of the WMN. On example of such attack is an intermediate node dropping packets which it was supposed to forward. This chapter presents a comprehensive discussion on the current authentication and privacy protection schemes for WMN. In addition, it proposes a novel security protocol for node authentication and message confidentiality and an anonymization scheme for privacy protection of users in WMNs.Comment: 32 pages, 10 figures. The work is an extended version of the author's previous works submitted in CoRR: arXiv:1107.5538v1 and arXiv:1102.1226v
    corecore