1,253 research outputs found

    Mutation-based evolutionary fault localisation

    Get PDF
    Fault localisation is an expensive and timeconsuming stage of software maintenance. Research is continuing to develop new techniques to automate the process of reducing the effort needed for fault localisation without losing quality. For instance, spectrum-based techniques use execution information from testing to formulate measures for ranking a list of suspicious code locations at which the program may be defective: the suspiciousness formulae mainly combine variables related to code coverage and test results (pass or fail). Moreover previous research has evaluated mutation analysis data (mutation spectra) instead of coverage traces, to yield promising results. This paper reports on a Genetic Programming (GP) solution for the fault localisation problem together with a set of experiments to evaluate the GP solution with respect to baselines and benchmarks. The innovative aspects are is the joint investigation of: (i) specialisation of suspiciousness formulae for certain contexts; (ii) the application of mutation spectra to GP-evolved formulae, i.e. signals other than program coverage; (iii) a comparison of the effectiveness of coverage spectra and mutation spectra in the context of evolutionary approaches; and (iv) an analysis of the mutation spectra quality. The results show the competitiveness of GP-evolved mutation spectra heuristics over coverage traces as well as over a number of baselines, and suggest that the quality of mutation-related variables increases the effectiveness of fault localisation heuristics

    AI Solutions for MDS: Artificial Intelligence Techniques for Misuse Detection and Localisation in Telecommunication Environments

    Get PDF
    This report considers the application of Articial Intelligence (AI) techniques to the problem of misuse detection and misuse localisation within telecommunications environments. A broad survey of techniques is provided, that covers inter alia rule based systems, model-based systems, case based reasoning, pattern matching, clustering and feature extraction, articial neural networks, genetic algorithms, arti cial immune systems, agent based systems, data mining and a variety of hybrid approaches. The report then considers the central issue of event correlation, that is at the heart of many misuse detection and localisation systems. The notion of being able to infer misuse by the correlation of individual temporally distributed events within a multiple data stream environment is explored, and a range of techniques, covering model based approaches, `programmed' AI and machine learning paradigms. It is found that, in general, correlation is best achieved via rule based approaches, but that these suffer from a number of drawbacks, such as the difculty of developing and maintaining an appropriate knowledge base, and the lack of ability to generalise from known misuses to new unseen misuses. Two distinct approaches are evident. One attempts to encode knowledge of known misuses, typically within rules, and use this to screen events. This approach cannot generally detect misuses for which it has not been programmed, i.e. it is prone to issuing false negatives. The other attempts to `learn' the features of event patterns that constitute normal behaviour, and, by observing patterns that do not match expected behaviour, detect when a misuse has occurred. This approach is prone to issuing false positives, i.e. inferring misuse from innocent patterns of behaviour that the system was not trained to recognise. Contemporary approaches are seen to favour hybridisation, often combining detection or localisation mechanisms for both abnormal and normal behaviour, the former to capture known cases of misuse, the latter to capture unknown cases. In some systems, these mechanisms even work together to update each other to increase detection rates and lower false positive rates. It is concluded that hybridisation offers the most promising future direction, but that a rule or state based component is likely to remain, being the most natural approach to the correlation of complex events. The challenge, then, is to mitigate the weaknesses of canonical programmed systems such that learning, generalisation and adaptation are more readily facilitated

    An Investigation into the Use of Mutation Analysis for Automated Program Repair

    Get PDF
    Research in Search-Based Automated Program Repair has demonstrated promising results, but has nevertheless been largely confined to small, single-edit patches using a limited set of mutation operators. Tackling a broader spectrum of bugs will require multiple edits and a larger set of operators, leading to a combinatorial explosion of the search space. This motivates the need for more efficient search techniques. We propose to use the test case results of candidate patches to localise suitable fix locations. We analysed the test suite results of single-edit patches, generated from a random walk across 28 bugs in 6 programs. Based on the findings of this analysis, we propose a number of mutation-based fault localisation techniques, which we subsequently evaluate by measuring how accurately they locate the statements at which the search was able to generate a solution. After demonstrating that these techniques fail to result in a significant improvement, we discuss why this may be the case, despite the successes of mutation-based fault localisation in previous studies

    Achievements, open problems and challenges for search based software testing

    Get PDF
    Search Based Software Testing (SBST) formulates testing as an optimisation problem, which can be attacked using computational search techniques from the field of Search Based Software Engineering (SBSE). We present an analysis of the SBST research agenda, focusing on the open problems and challenges of testing non-functional properties, in particular a topic we call 'Search Based Energy Testing' (SBET), Multi-objective SBST and SBST for Test Strategy Identification. We conclude with a vision of FIFIVERIFY tools, which would automatically find faults, fix them and verify the fixes. We explain why we think such FIFIVERIFY tools constitute an exciting challenge for the SBSE community that already could be within its reach

    SapFix: Automated End-To-End Repair at Scale

    Get PDF
    We report our experience with SapFix: the first deployment of automated end-to-end fault fixing, from test case design through to deployed repairs in production code. We have used SapFix at Facebook to repair 6 production systems, each consisting of tens of millions of lines of code, and which are collectively used by hundreds of millions of people worldwide

    Genetic Improvement of Software: a Comprehensive Survey

    Get PDF
    Genetic improvement (GI) uses automated search to find improved versions of existing software. We present a comprehensive survey of this nascent field of research with a focus on the core papers in the area published between 1995 and 2015. We identified core publications including empirical studies, 96% of which use evolutionary algorithms (genetic programming in particular). Although we can trace the foundations of GI back to the origins of computer science itself, our analysis reveals a significant upsurge in activity since 2012. GI has resulted in dramatic performance improvements for a diverse set of properties such as execution time, energy and memory consumption, as well as results for fixing and extending existing system functionality. Moreover, we present examples of research work that lies on the boundary between GI and other areas, such as program transformation, approximate computing, and software repair, with the intention of encouraging further exchange of ideas between researchers in these fields

    Genetic algorithm for automatic optical inspection

    Get PDF
    • …
    corecore