5,402 research outputs found

    Towards Smart Hybrid Fuzzing for Smart Contracts

    Get PDF
    Smart contracts are Turing-complete programs that are executed across a blockchain network. Unlike traditional programs, once deployed they cannot be modified. As smart contracts become more popular and carry more value, they become more of an interesting target for attackers. In recent years, smart contracts suffered major exploits, costing millions of dollars, due to programming errors. As a result, a variety of tools for detecting bugs has been proposed. However, majority of these tools often yield many false positives due to over-approximation or poor code coverage due to complex path constraints. Fuzzing or fuzz testing is a popular and effective software testing technique. However, traditional fuzzers tend to be more effective towards finding shallow bugs and less effective in finding bugs that lie deeper in the execution. In this work, we present CONFUZZIUS, a hybrid fuzzer that combines evolutionary fuzzing with constraint solving in order to execute more code and find more bugs in smart contracts. Evolutionary fuzzing is used to exercise shallow parts of a smart contract, while constraint solving is used to generate inputs which satisfy complex conditions that prevent the evolutionary fuzzing from exploring deeper paths. Moreover, we use data dependency analysis to efficiently generate sequences of transactions, that create specific contract states in which bugs may be hidden. We evaluate the effectiveness of our fuzzing strategy, by comparing CONFUZZIUS with state-of-the-art symbolic execution tools and fuzzers. Our evaluation shows that our hybrid fuzzing approach produces significantly better results than state-of-the-art symbolic execution tools and fuzzers

    How Effective are Smart Contract Analysis Tools? Evaluating Smart Contract Static Analysis Tools Using Bug Injection

    Full text link
    Security attacks targeting smart contracts have been on the rise, which have led to financial loss and erosion of trust. Therefore, it is important to enable developers to discover security vulnerabilities in smart contracts before deployment. A number of static analysis tools have been developed for finding security bugs in smart contracts. However, despite the numerous bug-finding tools, there is no systematic approach to evaluate the proposed tools and gauge their effectiveness. This paper proposes SolidiFI, an automated and systematic approach for evaluating smart contract static analysis tools. SolidiFI is based on injecting bugs (i.e., code defects) into all potential locations in a smart contract to introduce targeted security vulnerabilities. SolidiFI then checks the generated buggy contract using the static analysis tools, and identifies the bugs that the tools are unable to detect (false-negatives) along with identifying the bugs reported as false-positives. SolidiFI is used to evaluate six widely-used static analysis tools, namely, Oyente, Securify, Mythril, SmartCheck, Manticore and Slither, using a set of 50 contracts injected by 9369 distinct bugs. It finds several instances of bugs that are not detected by the evaluated tools despite their claims of being able to detect such bugs, and all the tools report many false positivesComment: ISSTA 202

    Harvey: A Greybox Fuzzer for Smart Contracts

    Full text link
    We present Harvey, an industrial greybox fuzzer for smart contracts, which are programs managing accounts on a blockchain. Greybox fuzzing is a lightweight test-generation approach that effectively detects bugs and security vulnerabilities. However, greybox fuzzers randomly mutate program inputs to exercise new paths; this makes it challenging to cover code that is guarded by narrow checks, which are satisfied by no more than a few input values. Moreover, most real-world smart contracts transition through many different states during their lifetime, e.g., for every bid in an auction. To explore these states and thereby detect deep vulnerabilities, a greybox fuzzer would need to generate sequences of contract transactions, e.g., by creating bids from multiple users, while at the same time keeping the search space and test suite tractable. In this experience paper, we explain how Harvey alleviates both challenges with two key fuzzing techniques and distill the main lessons learned. First, Harvey extends standard greybox fuzzing with a method for predicting new inputs that are more likely to cover new paths or reveal vulnerabilities in smart contracts. Second, it fuzzes transaction sequences in a targeted and demand-driven way. We have evaluated our approach on 27 real-world contracts. Our experiments show that the underlying techniques significantly increase Harvey's effectiveness in achieving high coverage and detecting vulnerabilities, in most cases orders-of-magnitude faster; they also reveal new insights about contract code.Comment: arXiv admin note: substantial text overlap with arXiv:1807.0787

    Targeted Greybox Fuzzing with Static Lookahead Analysis

    Full text link
    Automatic test generation typically aims to generate inputs that explore new paths in the program under test in order to find bugs. Existing work has, therefore, focused on guiding the exploration toward program parts that are more likely to contain bugs by using an offline static analysis. In this paper, we introduce a novel technique for targeted greybox fuzzing using an online static analysis that guides the fuzzer toward a set of target locations, for instance, located in recently modified parts of the program. This is achieved by first semantically analyzing each program path that is explored by an input in the fuzzer's test suite. The results of this analysis are then used to control the fuzzer's specialized power schedule, which determines how often to fuzz inputs from the test suite. We implemented our technique by extending a state-of-the-art, industrial fuzzer for Ethereum smart contracts and evaluate its effectiveness on 27 real-world benchmarks. Using an online analysis is particularly suitable for the domain of smart contracts since it does not require any code instrumentation---instrumentation to contracts changes their semantics. Our experiments show that targeted fuzzing significantly outperforms standard greybox fuzzing for reaching 83% of the challenging target locations (up to 14x of median speed-up)

    Deviant: A Mutation Testing Tool for Solidity Smart Contracts

    Get PDF
    Blockchain in recent years has exploded in popularity with Ethereum being one of the leading blockchain platforms. Solidity is a widely used scripting language for creating smart contracts in Ethereum applications. Quality assurance in Solidity contracts is of critical importance because bugs or vulnerabilities can lead to a considerable loss of financial assets. However, it is unclear what level of quality assurance is provided in many of these applications. Mutation testing is the process of intentionally injecting faults into a target program and then running the provided test suite against the various injected faults. Mutation testing is used to evaluate the effectiveness of a test suite, measuring the test suite’s capability of covering certain types of faults. This thesis presents Deviant, the first implementation of a mutation testing tool for Solidity smart contracts. Deviant implements mutation operators that cover the unique features of Solidity according to our constructed fault model, in addition to traditional mutation operators that exist for other programming languages. Deviant has been applied to five open-source Solidity projects: MetaCoin [30], MultiSigWallet [31], Alice [29], aragonOS [32], and OpenZeppelin [33]. Experimental results show that the provided test suites result in low mutation scores. These results indicate that the provided tests cannot ensure high-level assurance of code quality. Such evaluation results offer important guidelines for Solidity developers to implement more effective tests in order to deliver trustworthy code and reduce the risk of financial loss
    corecore