10,416 research outputs found

    Genomic landscape of salivary gland tumors.

    Get PDF
    Effective treatment options for advanced salivary gland tumors are lacking. To better understand these tumors, we report their genomic landscape. We studied the molecular aberrations in 117 patients with salivary gland tumors that were, on physician request, tested in a Clinical Laboratory Improvement Amendments (CLIA) laboratory (Foundation Medicine, Cambridge, MA) using next-generation sequencing (182 or 236 genes), and analyzed by N-of-One, Inc. (Lexington, MA). There were 354 total aberrations, with 240 distinct aberrations identified in this patient population. Only 10 individuals (8.5%) had a molecular portfolio that was identical to any other patient (with four different portfolios amongst the ten patients). The most common abnormalities involved the TP53 gene (36/117 [30.8% of patients]), cyclin pathway (CCND1, CDK4/6 or CDKN2A/B) (31/117 [26.5%]) and PI3K pathway (PIK3CA, PIK3R1, PTEN or AKT1/3) (28/117 [23.9%]). In multivariate analysis, statistically significant co-existing aberrations were observed as follows: TP53 and ERBB2 (p = 0.01), cyclin pathway and MDM2 (p = 0.03), and PI3K pathway and HRAS (p = 0.0001). We were able to identify possible cognate targeted therapies in most of the patients (107/117 [91.5%]), including FDA-approved drugs in 80/117 [68.4%]. In conclusion, salivary gland tumors were characterized by multiple distinct aberrations that mostly differed from patient to patient. Significant associations between aberrations in TP53 and ERBB2, the cyclin pathway and MDM2, and HRAS and the PI3K pathway were identified. Most patients had actionable alterations. These results provide a framework for tailored combinations of matched therapies

    A Pilot Study Comparing HPV-Positive and HPV-Negative Head and Neck Squamous Cell Carcinomas by Whole Exome Sequencing.

    Get PDF
    Background. Next-generation sequencing of cancers has identified important therapeutic targets and biomarkers. The goal of this pilot study was to compare the genetic changes in a human papillomavirus- (HPV-)positive and an HPV-negative head and neck tumor. Methods. DNA was extracted from the blood and primary tumor of a patient with an HPV-positive tonsillar cancer and those of a patient with an HPV-negative oral tongue tumor. Exome enrichment was performed using the Agilent SureSelect All Exon Kit, followed by sequencing on the ABI SOLiD platform. Results. Exome sequencing revealed slightly more mutations in the HPV-negative tumor (73) in contrast to the HPV-positive tumor (58). Multiple mutations were noted in zinc finger genes (ZNF3, 10, 229, 470, 543, 616, 664, 638, 716, and 799) and mucin genes (MUC4, 6, 12, and 16). Mutations were noted in MUC12 in both tumors. Conclusions. HPV-positive HNSCC is distinct from HPV-negative disease in terms of evidence of viral infection, p16 status, and frequency of mutations. Next-generation sequencing has the potential to identify novel therapeutic targets and biomarkers in HNSCC

    Clinicopathological and targeted exome gene features of a patient with metastatic acinic cell carcinoma of the parotid gland harboring an ARID2 nonsense mutation and CDKN2A/B deletion

    Get PDF
    We describe the presentation, treatment, clinical outcome, and targeted genome analysis of a metastatic salivary acinic cell carcinoma (AciCC). A 71-year-old male presented with a 3 cm right tail of a parotid lesion, first detected as a nodule by the patient seven months earlier. He had a right total parotidectomy with cranial nerve VII resection, right facial nerve resection and grafting, resection of the right conchal cartilage, and right modified radical neck dissection. The primary tumor revealed AciCC with two distinct areas: a well-differentiated component with glandular architecture and a dedifferentiated component with infiltrative growth pattern associated with prominent stromal response, necrosis, perineural invasion, and cellular pleomorphism. Tumor staging was pT4 N0 MX. Immunohistochemistry staining showed pankeratin (+), CD56 (−), and a Ki67 proliferation index of 15%. Upon microscopic inspection, 49 local lymph nodes resected during parotidectomy were negative for cancer cells. Targeted sequencing of the primary tumor revealed deletions of CDKN2A and CDKN2B, a nonsense mutation in ARID2, and single missense mutations of unknown significance in nine other genes. Despite postoperative localized radiation treatment, follow-up whole body PET/CT scan showed lung, soft tissue, bone, and liver metastases. The patient expired 9 months after resection of the primary tumor

    Comparative TP53 targeted next generation sequencing analysis as a diagnostic tool for determining lung tumor origin in patients with head and neck squamous cell carcinoma and synchronous / metachronous squamous cell lung carcinoma

    Get PDF
    Head and neck squamous cell carcinoma (HNSCC) is a malignant epithelial disease arising from the mucosa of the upper aerodigestive tract. It is the 6th most common malignancy worldwide with approximately 650 000 new cases diagnosed each year. In patients with HNSCC, the chance of acquiring a second malignancy in the lung is about 5.4%. Differentiation between a lung metastasis of a HNSCC and a second primary squamous cell carcinoma of the lung (LSCC) remains one of the most difficult tasks in diagnostic pathology, although differentiation would be crucial because of the highly different therapeutic regimes. In most cases traditional morphological examinations fail to find the origin of the lung tumor, so that a reliable method of differentiation is desperately needed. Differentiation has to be made between two major types of HNSCC; HPV-associated and non-HPV-associated tumors which are caused by tobacco smoking and alcohol consumption and harbor TP53 mutations in most of the cases. Researchers have tried to differentiate between lung metastasis and second primary comparing HPV-status of the head and neck and the lung tumors with some success, but in case of negativity of both tumors further analysis is needed. In the past few years, next generation sequencing technology (NGS) has been established worldwide and also in our institute of pathology. This method has the advantage, that mutations of all coding exones of the TP53 gene can be examined in a time-effective high-troughput way. We hypothetised, that comparing the mutations of the HNSCC and LSCC can lead to a decision on lung tumor origin. In our study 65 head and neck squamous cell carcinomas and lung squamous cell carcinomas of 32 patients were analysed. We combined p16 immunohitochemistry and HPV typing to compare HPV status of the tumors in the hope to differentiate between these two entities in the lung. In case of HPV negativity in both tumors we performed a targeted next generation sequencing of all coding exones (exon 2-11) of the TP53 gene to compare mutation status. With the use of HPV analysis only, a decision on lung tumor origin could be made in 2 of the 32 cases (6%). With the use of targeted next generation sequencing of all coding exones of the TP53 gene we could make a decision in 29 of 32 cases (90%). Analysis of clinical records showed, that lung tumor origin has been identified correctly in only 13 out of 29 cases (45%). Furthermore, 11 out of 23 patients (48%) for whom mutational profiling data had not been available, had not received the most suitable treatment. We conclude, that NGS of all TP53 exones in these tumors can lead to better therapeutic decisions
    corecore