891 research outputs found

    Interactive intelligence: behaviour-based AI, musical HCI and the Turing Test

    Get PDF
    The field of behaviour-based artificial intelligence (AI), with its roots in the robotics research of Rodney Brooks, is not predominantly tied to linguistic interaction in the sense of the classic Turing test (or, "imitation game"). Yet, it is worth noting, both are centred on a behavioural model of intelligence. Similarly, there is no intrinsic connection between musical AI and the language-based Turing test, though there have been many attempts to forge connections between them. Nonetheless, there are aspects of musical AI and the Turing test that can be considered in the context of non-language-based interactive environments–-in particular, when dealing with real-time musical AI, especially interactive improvisation software. This paper draws out the threads of intentional agency and human indistinguishability from Turing’s original 1950 characterisation of AI. On the basis of this distinction, it considers different approaches to musical AI. In doing so, it highlights possibilities for non-hierarchical interplay between human and computer agents

    Towards musical interaction: 'Schismatics' for e-violin and computer

    Get PDF
    This paper discusses the evolution of the Max/MSP patch used in schismatics (2007, rev. 2010) for electric violin (Violectra) and computer, by composer Sam Hayden in collaboration with violinist Mieko Kanno. schismatics involves a standard performance paradigm of a fixed notated part for the e-violin with sonically unfixed live computer processing. Hayden was unsatisfied with the early version of the piece: the use of attack detection on the live e-violin playing to trigger stochastic processes led to an essentially reactive behaviour in the computer, resulting in a somewhat predictable one-toone sonic relationship between them. It demonstrated little internal relationship between the two beyond an initial e-violin ‘action’ causing a computer ‘event’. The revisions in 2010, enabled by an AHRC Practice-Led research award, aimed to achieve 1) a more interactive performance situation and 2) a subtler and more ‘musical’ relationship between live and processed sounds. This was realised through the introduction of sound analysis objects, in particular machine listening and learning techniques developed by Nick Collins. One aspect of the programming was the mapping of analysis data to synthesis parameters, enabling the computer transformations of the e-violin to be directly related to Kanno’s interpretation of the piece in performance

    Portfolio of Original Compositions

    Get PDF

    Investigating the cognitive foundations of collaborative musical free improvisation: Experimental case studies using a novel application of the subsumption architecture

    Get PDF
    This thesis investigates the cognitive foundations of collaborative musical free improvisation. To explore the cognitive underpinnings of the collaborative process, a series of experimental case studies was undertaken in which expert improvisors performed with an artificial agent. The research connects ecological musicology and subsumption robotics, and builds upon insights from empirical psychology pertaining to the attribution of intentionality. A distinguishing characteristic of free improvisation is that no over-arching framework of formal musical conventions defines it, and it cannot be positively identified by sound alone, which poses difficulties for traditional musicology. Current musicological research has begun to focus on the social dimension of music, including improvisation. Ecological psychology, which focuses on the relation of cognition to agent–environment dynamics using the notion of affordances, has been shown to be a promising approach to understanding musical improvisation. This ecological approach to musicology makes it possible to address the subjective and social aspects of improvised music, as opposed to the common treatment of music as objective and neutral. The subjective dimension of musical listening has been highlighted in music cognition studies of cue abstraction, whereby listeners perceive emergent structures while listening to certain forms of music when no structures are identified in advance. These considerations informed the design of the artificial agent, Odessa, used for this study. In contrast to traditional artificial intelligence (AI), which tends to view the world as objective and neutral, behaviour-based robotics historically developed around ideas similar to those of ecological psychology, focused on agent–environment dynamics and the ability to deal with potentially rapidly changing environments. Behaviour-based systems that are designed using the subsumption architecture are robust and flexible in virtue of their modular, decentralised design comprised of simple interactions between simple mechanisms. The competence of such agents is demonstrated on the basis of their interaction with the environment and ability to cope with unknown and dynamic conditions, which suggests the concept of improvisation. This thesis documents a parsimonious subsumption design for an agent that performs musical free improvisation with human co-performers, as well as the experimental studies conducted with this agent. The empirical component examines the human experience of collaborating with the agent and, more generally, the cognitive psychology of collaborative improvisation. The design was ultimately successful, and yielded insights about cognition in collaborative improvisation, in particular, concerning the central relationship between perceived intentionality and affordances. As a novel application of the subsumption architecture, this research contributes to AI/robotics and to research on interactive improvisation systems. It also contributes to music psychology and cognition, as well as improvisation studies, through its empirical grounding of an ecological model of musical interaction
    • …
    corecore