6,023 research outputs found

    On the Modeling of Musical Solos as Complex Networks

    Full text link
    Notes in a musical piece are building blocks employed in non-random ways to create melodies. It is the "interaction" among a limited amount of notes that allows constructing the variety of musical compositions that have been written in centuries and within different cultures. Networks are a modeling tool that is commonly employed to represent a set of entities interacting in some way. Thus, notes composing a melody can be seen as nodes of a network that are connected whenever these are played in sequence. The outcome of such a process results in a directed graph. By using complex network theory, some main metrics of musical graphs can be measured, which characterize the related musical pieces. In this paper, we define a framework to represent melodies as networks. Then, we provide an analysis on a set of guitar solos performed by main musicians. Results of this study indicate that the presented model can have an impact on audio and multimedia applications such as music classification, identification, e-learning, automatic music generation, multimedia entertainment.Comment: to appear in Information Science, Elsevier. Please cite the paper including such information. arXiv admin note: text overlap with arXiv:1603.0497

    On the Complex Network Structure of Musical Pieces: Analysis of Some Use Cases from Different Music Genres

    Full text link
    This paper focuses on the modeling of musical melodies as networks. Notes of a melody can be treated as nodes of a network. Connections are created whenever notes are played in sequence. We analyze some main tracks coming from different music genres, with melodies played using different musical instruments. We find out that the considered networks are, in general, scale free networks and exhibit the small world property. We measure the main metrics and assess whether these networks can be considered as formed by sub-communities. Outcomes confirm that peculiar features of the tracks can be extracted from this analysis methodology. This approach can have an impact in several multimedia applications such as music didactics, multimedia entertainment, and digital music generation.Comment: accepted to Multimedia Tools and Applications, Springe

    Clustering of Musical Pieces through Complex Networks: an Assessment over Guitar Solos

    Full text link
    Musical pieces can be modeled as complex networks. This fosters innovative ways to categorize music, paving the way towards novel applications in multimedia domains, such as music didactics, multimedia entertainment and digital music generation. Clustering these networks through their main metrics allows grouping similar musical tracks. To show the viability of the approach, we provide results on a dataset of guitar solos.Comment: to appear in IEEE Multimedia magazin

    Deep Learning Techniques for Music Generation -- A Survey

    Full text link
    This paper is a survey and an analysis of different ways of using deep learning (deep artificial neural networks) to generate musical content. We propose a methodology based on five dimensions for our analysis: Objective - What musical content is to be generated? Examples are: melody, polyphony, accompaniment or counterpoint. - For what destination and for what use? To be performed by a human(s) (in the case of a musical score), or by a machine (in the case of an audio file). Representation - What are the concepts to be manipulated? Examples are: waveform, spectrogram, note, chord, meter and beat. - What format is to be used? Examples are: MIDI, piano roll or text. - How will the representation be encoded? Examples are: scalar, one-hot or many-hot. Architecture - What type(s) of deep neural network is (are) to be used? Examples are: feedforward network, recurrent network, autoencoder or generative adversarial networks. Challenge - What are the limitations and open challenges? Examples are: variability, interactivity and creativity. Strategy - How do we model and control the process of generation? Examples are: single-step feedforward, iterative feedforward, sampling or input manipulation. For each dimension, we conduct a comparative analysis of various models and techniques and we propose some tentative multidimensional typology. This typology is bottom-up, based on the analysis of many existing deep-learning based systems for music generation selected from the relevant literature. These systems are described and are used to exemplify the various choices of objective, representation, architecture, challenge and strategy. The last section includes some discussion and some prospects.Comment: 209 pages. This paper is a simplified version of the book: J.-P. Briot, G. Hadjeres and F.-D. Pachet, Deep Learning Techniques for Music Generation, Computational Synthesis and Creative Systems, Springer, 201

    Learning a feature space for similarity in world music

    Get PDF
    In this study we investigate computational methods for assessing music similarity in world music styles. We use state-of-the-art audio features to describe musical content in world music recordings. Our music collection is a subset of the Smithsonian Folkways Recordings with audio examples from 31 countries from around the world. Using supervised and unsupervised dimensionality reduction techniques we learn feature representations for music similarity. We evaluate how well music styles separate in this learned space with a classification experiment. We obtained moderate performance classifying the recordings by country. Analysis of misclassifications revealed cases of geographical or cultural proximity. We further evaluate the learned space by detecting outliers, i.e. identifying recordings that stand out in the collection. We use a data mining technique based on Mahalanobis distances to detect outliers and perform a listening experiment in the ‘odd one out’ style to evaluate our findings. We are able to detect, amongst others, recordings of non-musical content as outliers as well as music with distinct timbral and harmonic content. The listening experiment reveals moderate agreement between subjects’ ratings and our outlier estimation

    Methodological contributions by means of machine learning methods for automatic music generation and classification

    Get PDF
    189 p.Ikerketa lan honetan bi gai nagusi landu dira: musikaren sorkuntza automatikoa eta sailkapena. Musikaren sorkuntzarako bertso doinuen corpus bat hartu da abiapuntu moduan doinu ulergarri berriak sortzeko gai den metodo bat sortzeko. Doinuei ulergarritasuna hauen barnean dauden errepikapen egiturek ematen dietela suposatu da, eta metodoaren hiru bertsio nagusi aurkeztu dira, bakoitzean errepikapen horien definizio ezberdin bat erabiliz.Musikaren sailkapen automatikoan hiru ataza garatu dira: generoen sailkapena, familia melodikoen taldekatzea eta konposatzaileen identifikazioa. Musikaren errepresentazio ezberdinak erabili dira ataza bakoitzerako, eta ikasketa automatikoko hainbat teknika ere probatu dira, emaitzarik hoberenak zeinek ematen dituen aztertzeko.Gainbegiratutako sailkapenaren alorrean ere binakako sailkapenaren gainean lana egin da, aurretik existitzen zen metodo bat optimizatuz. Hainbat datu baseren gainean probatu da garatutako teknika, baita konposatzaile klasikoen piezen ezaugarriez osatutako datu base batean ere
    corecore