1,354 research outputs found

    Image operator learning coupled with CNN classification and its application to staff line removal

    Full text link
    Many image transformations can be modeled by image operators that are characterized by pixel-wise local functions defined on a finite support window. In image operator learning, these functions are estimated from training data using machine learning techniques. Input size is usually a critical issue when using learning algorithms, and it limits the size of practicable windows. We propose the use of convolutional neural networks (CNNs) to overcome this limitation. The problem of removing staff-lines in music score images is chosen to evaluate the effects of window and convolutional mask sizes on the learned image operator performance. Results show that the CNN based solution outperforms previous ones obtained using conventional learning algorithms or heuristic algorithms, indicating the potential of CNNs as base classifiers in image operator learning. The implementations will be made available on the TRIOSlib project site.Comment: To appear in ICDAR 201

    Deep Neural Networks for Document Processing of Music Score Images

    Get PDF
    [EN] There is an increasing interest in the automatic digitization of medieval music documents. Despite efforts in this field, the detection of the different layers of information on these documents still poses difficulties. The use of Deep Neural Networks techniques has reported outstanding results in many areas related to computer vision. Consequently, in this paper, we study the so-called Convolutional Neural Networks (CNN) for performing the automatic document processing of music score images. This process is focused on layering the image into its constituent parts (namely, background, staff lines, music notes, and text) by training a classifier with examples of these parts. A comprehensive experimentation in terms of the configuration of the networks was carried out, which illustrates interesting results as regards to both the efficiency and effectiveness of these models. In addition, a cross-manuscript adaptation experiment was presented in which the networks are evaluated on a different manuscript from the one they were trained. The results suggest that the CNN is capable of adapting its knowledge, and so starting from a pre-trained CNN reduces (or eliminates) the need for new labeled data.This work was supported by the Social Sciences and Humanities Research Council of Canada, and Universidad de Alicante through grant GRE-16-04.Calvo-Zaragoza, J.; Castellanos, F.; Vigliensoni, G.; Fujinaga, I. (2018). Deep Neural Networks for Document Processing of Music Score Images. Applied Sciences. 8(5). https://doi.org/10.3390/app8050654S85Bainbridge, D., & Bell, T. (2001). Computers and the Humanities, 35(2), 95-121. doi:10.1023/a:1002485918032Byrd, D., & Simonsen, J. G. (2015). Towards a Standard Testbed for Optical Music Recognition: Definitions, Metrics, and Page Images. Journal of New Music Research, 44(3), 169-195. doi:10.1080/09298215.2015.1045424LeCun, Y., Bengio, Y., & Hinton, G. (2015). Deep learning. Nature, 521(7553), 436-444. doi:10.1038/nature14539Rebelo, A., Fujinaga, I., Paszkiewicz, F., Marcal, A. R. S., Guedes, C., & Cardoso, J. S. (2012). Optical music recognition: state-of-the-art and open issues. International Journal of Multimedia Information Retrieval, 1(3), 173-190. doi:10.1007/s13735-012-0004-6Louloudis, G., Gatos, B., Pratikakis, I., & Halatsis, C. (2008). Text line detection in handwritten documents. Pattern Recognition, 41(12), 3758-3772. doi:10.1016/j.patcog.2008.05.011Montagner, I. S., Hirata, N. S. T., & Hirata, R. (2017). Staff removal using image operator learning. Pattern Recognition, 63, 310-320. doi:10.1016/j.patcog.2016.10.002Calvo-Zaragoza, J., Micó, L., & Oncina, J. (2016). Music staff removal with supervised pixel classification. International Journal on Document Analysis and Recognition (IJDAR), 19(3), 211-219. doi:10.1007/s10032-016-0266-2Calvo-Zaragoza, J., Pertusa, A., & Oncina, J. (2017). Staff-line detection and removal using a convolutional neural network. Machine Vision and Applications, 28(5-6), 665-674. doi:10.1007/s00138-017-0844-4Shelhamer, E., Long, J., & Darrell, T. (2017). Fully Convolutional Networks for Semantic Segmentation. IEEE Transactions on Pattern Analysis and Machine Intelligence, 39(4), 640-651. doi:10.1109/tpami.2016.2572683Kato, Z. (2011). Markov Random Fields in Image Segmentation. Foundations and Trends® in Signal Processing, 5(1-2), 1-155. doi:10.1561/2000000035Lecun, Y., Bottou, L., Bengio, Y., & Haffner, P. (1998). Gradient-based learning applied to document recognition. Proceedings of the IEEE, 86(11), 2278-2324. doi:10.1109/5.72679

    Domain adaptation for staff-region retrieval of music score images

    Get PDF
    Optical music recognition (OMR) is the field that studies how to automatically read music notation from score images. One of the relevant steps within the OMR workflow is the staff-region retrieval. This process is a key step because any undetected staff will not be processed by the subsequent steps. This task has previously been addressed as a supervised learning problem in the literature; however, ground-truth data are not always available, so each new manuscript requires a preliminary manual annotation. This situation is one of the main bottlenecks in OMR, because of the countless number of existing manuscripts , and the associated manual labeling cost. With the aim of mitigating this issue, we propose the application of a domain adaptation technique, the so-called Domain-Adversarial Neural Network (DANN), based on a combination of a gradient reversal layer and a domain classifier in the inference neural architecture. The results from our experiments support the benefits of our proposed solution, obtaining improvements of approximately 29% in the F-score.Open Access funding provided thanks to the CRUE-CSIC agreement with Springer Nature. This paper is part of the I+D+i PID2020-118447RA-I00 (MultiScore) project funded by MCIN/AEI/10.13039/501100011033. The first author acknowledges support from the “Programa I+D+i de la Generalitat Valenciana” through grants ACIF/2019/042 and CIBEFP/2021/72. This work also draws on research supported by the Social Sciences and Humanities Research Council (895-2013-1012) and the Fonds de recherche du Québec-Société et Culture (2022-SE3-303927)

    Optical Music Recognition: State of the Art and Major Challenges

    Get PDF
    Optical Music Recognition (OMR) is concerned with transcribing sheet music into a machine-readable format. The transcribed copy should allow musicians to compose, play and edit music by taking a picture of a music sheet. Complete transcription of sheet music would also enable more efficient archival. OMR facilitates examining sheet music statistically or searching for patterns of notations, thus helping use cases in digital musicology too. Recently, there has been a shift in OMR from using conventional computer vision techniques towards a deep learning approach. In this paper, we review relevant works in OMR, including fundamental methods and significant outcomes, and highlight different stages of the OMR pipeline. These stages often lack standard input and output representation and standardised evaluation. Therefore, comparing different approaches and evaluating the impact of different processing methods can become rather complex. This paper provides recommendations for future work, addressing some of the highlighted issues and represents a position in furthering this important field of research

    Segmentation process and spectral characteristics in the determination of musical genres

    Get PDF
    Over the past few years there has been a tendency to store audio tracks for later use on CD-DVDs, HDD-SSDs as well as on the internet, which makes it challenging to classify the information either online or offline. For this purpose, the audio tracks must be tagged. Tags are said to be texts based on the semantic information of the sound [1]. Thus, music analysis can be done in several ways [2] since music is identified by its genre, artist, instruments and structure, by a tagging system that can be manual or automatic. The manual tagging allows the visualization of the behavior of an audio track either in time domain or in frequency domain as in the spectrogram, making it possible to classify the songs without listening to them. However, this process is very time consuming and labor intensive, including health problems [3] which shows that "the volume, sound sensitivity, time and cost required for a manual labeling process is generally prohibitive. Three fundamental steps are required to carry out automatic labelling: pre-processing, feature extraction and classification [4]. The present study developed an algorithm for performing automatic classification of music genres using a segmentation process employing spectral characteristics such as centroid (SC), flatness (SF) and spread (SS), as well as a time spectral characteristic

    Staff-line detection and removal using a convolutional neural network

    Get PDF
    Staff-line removal is an important preprocessing stage for most optical music recognition systems. Common procedures to solve this task involve image processing techniques. In contrast to these traditional methods based on hand-engineered transformations, the problem can also be approached as a classification task in which each pixel is labeled as either staff or symbol, so that only those that belong to symbols are kept in the image. In order to perform this classification, we propose the use of convolutional neural networks, which have demonstrated an outstanding performance in image retrieval tasks. The initial features of each pixel consist of a square patch from the input image centered at that pixel. The proposed network is trained by using a dataset which contains pairs of scores with and without the staff lines. Our results in both binary and grayscale images show that the proposed technique is very accurate, outperforming both other classifiers and the state-of-the-art strategies considered. In addition, several advantages of the presented methodology with respect to traditional procedures proposed so far are discussed.This work was supported by the Spanish Ministerio de Educación, Cultura y Deporte through a FPU Fellowship (Ref. AP2012–0939), the Spanish Ministerio de Economía y Competitividad through Project TIMuL (No. TIN2013-48152-C2-1-R supported by EU FEDER funds) and the Instituto Universitario de Investigación Informática (IUII) from the University of Alicante
    corecore