87 research outputs found

    Spectro-temporal post-enhancement using MMSE estimation in NMF based single-channel source separation

    Get PDF
    We propose to use minimum mean squared error (MMSE) estimates to enhance the signals that are separated by nonnegative matrix factorization (NMF). In single channel source separation (SCSS), NMF is used to train a set of basis vectors for each source from their training spectrograms. Then NMF is used to decompose the mixed signal spectrogram as a weighted linear combination of the trained basis vectors from which estimates of each corresponding source can be obtained. In this work, we deal with the spectrogram of each separated signal as a 2D distorted signal that needs to be restored. A multiplicative distortion model is assumed where the logarithm of the true signal distribution is modeled with a Gaussian mixture model (GMM) and the distortion is modeled as having a log-normal distribution. The parameters of the GMM are learned from training data whereas the distortion parameters are learned online from each separated signal. The initial source estimates are improved and replaced with their MMSE estimates under this new probabilistic framework. The experimental results show that using the proposed MMSE estimation technique as a post enhancement after NMF improves the quality of the separated signal

    Incorporating prior information in nonnegative matrix factorization for audio source separation

    Get PDF
    In this work, we propose solutions to the problem of audio source separation from a single recording. The audio source signals can be speech, music or any other audio signals. We assume training data for the individual source signals that are present in the mixed signal are available. The training data are used to build a representative model for each source. In most cases, these models are sets of basis vectors in magnitude or power spectral domain. The proposed algorithms basically depend on decomposing the spectrogram of the mixed signal with the trained basis models for all observed sources in the mixed signal. Nonnegative matrix factorization (NMF) is used to train the basis models for the source signals. NMF is then used to decompose the mixed signal spectrogram as a weighted linear combination of the trained basis vectors for each observed source in the mixed signal. After decomposing the mixed signal, spectral masks are built and used to reconstruct the source signals. In this thesis, we improve the performance of NMF for source separation by incorporating more constraints and prior information related to the source signals to the NMF decomposition results. The NMF decomposition weights are encouraged to satisfy some prior information that is related to the nature of the source signals. The priors are modeled using Gaussian mixture models or hidden Markov models. These priors basically represent valid weight combination sequences that the basis vectors can receive for a certain type of source signal. The prior models are incorporated with the NMF cost function using either log-likelihood or minimum mean squared error estimation (MMSE). We also incorporate the prior information as a post processing. We incorporate the smoothness prior on the NMF solutions by using post smoothing processing. We also introduce post enhancement using MMSE estimation to obtain better separation for the source signals. In this thesis, we also improve the NMF training for the basis models. In cases when enough training data are not available, we introduce two di erent adaptation methods for the trained basis to better t the sources in the mixed signal. We also improve the training procedures for the sources by learning more discriminative dictionaries for the source signals. In addition, to consider a larger context in the models, we concatenate neighboring spectra together and train basis sets from them instead of a single frame which makes it possible to directly model the relation between consequent spectral frames. Experimental results show that the proposed approaches improve the performance of using NMF in source separation applications

    Applying source separation to music

    Get PDF
    International audienceSeparation of existing audio into remixable elements is very useful to repurpose music audio. Applications include upmixing video soundtracks to surround sound (e.g. home theater 5.1 systems), facilitating music transcriptions, allowing better mashups and remixes for disk jockeys, and rebalancing sound levels on multiple instruments or voices recorded simultaneously to a single track. In this chapter, we provide an overview of the algorithms and approaches designed to address the challenges and opportunities in music. Where applicable, we also introduce commonalities and links to source separation for video soundtracks, since many musical scenarios involve video soundtracks (e.g. YouTube recordings of live concerts, movie sound tracks). While space prohibits describing every method in detail, we include detail on representative music‐specific algorithms and approaches not covered in other chapters. The intent is to give the reader a high‐level understanding of the workings of key exemplars of the source separation approaches applied in this domain

    Single-Channel Signal Separation and Deconvolution with Generative Adversarial Networks

    Get PDF
    Single-channel signal separation and deconvolution aims to separate and deconvolve individual sources from a single-channel mixture and is a challenging problem in which no prior knowledge of the mixing filters is available. Both individual sources and mixing filters need to be estimated. In addition, a mixture may contain non-stationary noise which is unseen in the training set. We propose a synthesizing-decomposition (S-D) approach to solve the single-channel separation and deconvolution problem. In synthesizing, a generative model for sources is built using a generative adversarial network (GAN). In decomposition, both mixing filters and sources are optimized to minimize the reconstruction error of the mixture. The proposed S-D approach achieves a peak-to-noise-ratio (PSNR) of 18.9 dB and 15.4 dB in image inpainting and completion, outperforming a baseline convolutional neural network PSNR of 15.3 dB and 12.2 dB, respectively and achieves a PSNR of 13.2 dB in source separation together with deconvolution, outperforming a convolutive non-negative matrix factorization (NMF) baseline of 10.1 dB.Comment: 7 pages. Accepted by IJCAI 201

    Proceedings of the second "international Traveling Workshop on Interactions between Sparse models and Technology" (iTWIST'14)

    Get PDF
    The implicit objective of the biennial "international - Traveling Workshop on Interactions between Sparse models and Technology" (iTWIST) is to foster collaboration between international scientific teams by disseminating ideas through both specific oral/poster presentations and free discussions. For its second edition, the iTWIST workshop took place in the medieval and picturesque town of Namur in Belgium, from Wednesday August 27th till Friday August 29th, 2014. The workshop was conveniently located in "The Arsenal" building within walking distance of both hotels and town center. iTWIST'14 has gathered about 70 international participants and has featured 9 invited talks, 10 oral presentations, and 14 posters on the following themes, all related to the theory, application and generalization of the "sparsity paradigm": Sparsity-driven data sensing and processing; Union of low dimensional subspaces; Beyond linear and convex inverse problem; Matrix/manifold/graph sensing/processing; Blind inverse problems and dictionary learning; Sparsity and computational neuroscience; Information theory, geometry and randomness; Complexity/accuracy tradeoffs in numerical methods; Sparsity? What's next?; Sparse machine learning and inference.Comment: 69 pages, 24 extended abstracts, iTWIST'14 website: http://sites.google.com/site/itwist1

    Sparse feature learning for image analysis in segmentation, classification, and disease diagnosis.

    Get PDF
    The success of machine learning algorithms generally depends on intermediate data representation, called features that disentangle the hidden factors of variation in data. Moreover, machine learning models are required to be generalized, in order to reduce the specificity or bias toward the training dataset. Unsupervised feature learning is useful in taking advantage of large amount of unlabeled data, which is available to capture these variations. However, learned features are required to capture variational patterns in data space. In this dissertation, unsupervised feature learning with sparsity is investigated for sparse and local feature extraction with application to lung segmentation, interpretable deep models, and Alzheimer\u27s disease classification. Nonnegative Matrix Factorization, Autoencoder and 3D Convolutional Autoencoder are used as architectures or models for unsupervised feature learning. They are investigated along with nonnegativity, sparsity and part-based representation constraints for generalized and transferable feature extraction

    From representation learning to thematic classification - Application to hierarchical analysis of hyperspectral images

    Get PDF
    Numerous frameworks have been developed in order to analyze the increasing amount of available image data. Among those methods, supervised classification has received considerable attention leading to the development of state-of-the-art classification methods. These methods aim at inferring the class of each observation given a specific class nomenclature by exploiting a set of labeled observations. Thanks to extensive research efforts of the community, classification methods have become very efficient. Nevertheless, the results of a classification remains a highlevel interpretation of the scene since it only gives a single class to summarize all information in a given pixel. Contrary to classification methods, representation learning methods are model-based approaches designed especially to handle high-dimensional data and extract meaningful latent variables. By using physic-based models, these methods allow the user to extract very meaningful variables and get a very detailed interpretation of the considered image. The main objective of this thesis is to develop a unified framework for classification and representation learning. These two methods provide complementary approaches allowing to address the problem using a hierarchical modeling approach. The representation learning approach is used to build a low-level model of the data whereas classification is used to incorporate supervised information and may be seen as a high-level interpretation of the data. Two different paradigms, namely Bayesian models and optimization approaches, are explored to set up this hierarchical model. The proposed models are then tested in the specific context of hyperspectral imaging where the representation learning task is specified as a spectral unmixing proble

    Isometry and convexity in dimensionality reduction

    Get PDF
    The size of data generated every year follows an exponential growth. The number of data points as well as the dimensions have increased dramatically the past 15 years. The gap between the demand from the industry in data processing and the solutions provided by the machine learning community is increasing. Despite the growth in memory and computational power, advanced statistical processing on the order of gigabytes is beyond any possibility. Most sophisticated Machine Learning algorithms require at least quadratic complexity. With the current computer model architecture, algorithms with higher complexity than linear O(N) or O(N logN) are not considered practical. Dimensionality reduction is a challenging problem in machine learning. Often data represented as multidimensional points happen to have high dimensionality. It turns out that the information they carry can be expressed with much less dimensions. Moreover the reduced dimensions of the data can have better interpretability than the original ones. There is a great variety of dimensionality reduction algorithms under the theory of Manifold Learning. Most of the methods such as Isomap, Local Linear Embedding, Local Tangent Space Alignment, Diffusion Maps etc. have been extensively studied under the framework of Kernel Principal Component Analysis (KPCA). In this dissertation we study two current state of the art dimensionality reduction methods, Maximum Variance Unfolding (MVU) and Non-Negative Matrix Factorization (NMF). These two dimensionality reduction methods do not fit under the umbrella of Kernel PCA. MVU is cast as a Semidefinite Program, a modern convex nonlinear optimization algorithm, that offers more flexibility and power compared to iv KPCA. Although MVU and NMF seem to be two disconnected problems, we show that there is a connection between them. Both are special cases of a general nonlinear factorization algorithm that we developed. Two aspects of the algorithms are of particular interest: computational complexity and interpretability. In other words computational complexity answers the question of how fast we can find the best solution of MVU/NMF for large data volumes. Since we are dealing with optimization programs, we need to find the global optimum. Global optimum is strongly connected with the convexity of the problem. Interpretability is strongly connected with local isometry1 that gives meaning in relationships between data points. Another aspect of interpretability is association of data with labeled information. The contributions of this thesis are the following: 1. MVU is modified so that it can scale more efficient. Results are shown on 1 million speech datasets. Limitations of the method are highlighted. 2. An algorithm for fast computations for the furthest neighbors is presented for the first time in the literature. 3. Construction of optimal kernels for Kernel Density Estimation with modern convex programming is presented. For the first time we show that the Leave One Cross Validation (LOOCV) function is quasi-concave. 4. For the first time NMF is formulated as a convex optimization problem 5. An algorithm for the problem of Completely Positive Matrix Factorization is presented. 6. A hybrid algorithm of MVU and NMF the isoNMF is presented combining advantages of both methods. 7. The Isometric Separation Maps (ISM) a variation of MVU that contains classification information is presented. 8. Large scale nonlinear dimensional analysis on the TIMIT speech database is performed. 9. A general nonlinear factorization algorithm is presented based on sequential convex programming. Despite the efforts to scale the proposed methods up to 1 million data points in reasonable time, the gap between the industrial demand and the current state of the art is still orders of magnitude wide.Ph.D.Committee Chair: David Anderson; Committee Co-Chair: Alexander Gray; Committee Member: Anthony Yezzi; Committee Member: Hongyuan Zha; Committee Member: Justin Romberg; Committee Member: Ronald Schafe
    corecore