1,073 research outputs found

    Classification of music genres using sparse representations in overcomplete dictionaries

    Get PDF
    This paper presents a simple, but efficient and robust, method for music genre classification that utilizes sparse representations in overcomplete dictionaries. The training step involves creating dictionaries, using the K-SVD algorithm, in which data corresponding to a particular music genre has a sparse representation. In the classification step, the Orthogonal Matching Pursuit (OMP) algorithm is used to separate feature vectors that consist only of Linear Predictive Coding (LPC) coefficients. The paper analyses in detail a popular case study from the literature, the ISMIR 2004 database. Using the presented method, the correct classification percentage of the 6 music genres is 85.59, result that is comparable with the best results published so far

    Adaptive Multi-Class Audio Classification in Noisy In-Vehicle Environment

    Full text link
    With ever-increasing number of car-mounted electric devices and their complexity, audio classification is increasingly important for the automotive industry as a fundamental tool for human-device interactions. Existing approaches for audio classification, however, fall short as the unique and dynamic audio characteristics of in-vehicle environments are not appropriately taken into account. In this paper, we develop an audio classification system that classifies an audio stream into music, speech, speech+music, and noise, adaptably depending on driving environments including highway, local road, crowded city, and stopped vehicle. More than 420 minutes of audio data including various genres of music, speech, speech+music, and noise are collected from diverse driving environments. The results demonstrate that the proposed approach improves the average classification accuracy up to 166%, and 64% for speech, and speech+music, respectively, compared with a non-adaptive approach in our experimental settings

    MPEG-1 bitstreams processing for audio content analysis

    Get PDF
    In this paper, we present the MPEG-1 Audio bitstreams processing work which our research group is involved in. This work is primarily based on the processing of the encoded bitstream, and the extraction of useful audio features for the purposes of analysis and browsing. In order to prepare for the discussion of these features, the MPEG-1 audio bitstream format is first described. The Application Interface Protocol (API) which we have been developing in C++ is then introduced, before completing the paper with a discussion on audio feature extraction

    Musical instrument classification using non-negative matrix factorization algorithms

    No full text
    In this paper, a class of algorithms for automatic classification of individual musical instrument sounds is presented. Several perceptual features used in general sound classification applications were measured for 300 sound recordings consisting of 6 different musical instrument classes (piano, violin, cello, flute, bassoon and soprano saxophone). In addition, MPEG-7 basic spectral and spectral basis descriptors were considered, providing an effective combination for accurately describing the spectral and timbrai audio characteristics. The audio flies were split using 70% of the available data for training and the remaining 30% for testing. A classifier was developed based on non-negative matrix factorization (NMF) techniques, thus introducing a novel application of NMF. The standard NMF method was examined, as well as its modifications: the local, the sparse, and the discriminant NMF. Experimental results are presented to compare MPEG-7 spectral basis representations with MPEG-7 basic spectral features alongside the various NMF algorithms. The results indicate that the use of the spectrum projection coefficients for feature extraction and the standard NMF classifier yields an accuracy exceeding 95%. Ā©2006 IEEE

    Decision time horizon for music genre classification using short time features

    Get PDF
    In this paper music genre classification has been explored with special emphasis on the decision time horizon and ranking of tappeddelay-line short-time features. Late information fusion as e.g. majority voting is compared with techniques of early information fusion 1 such as dynamic PCA (DPCA). The most frequently suggested features in the literature were employed including melfrequency cepstral coefficients (MFCC), linear prediction coefficients (LPC), zero-crossing rate (ZCR), and MPEG-7 features. To rank the importance of the short time features consensus sensitivity analysis is applied. A Gaussian classifier (GC) with full covariance structure and a linear neural network (NN) classifier are used. 1
    • ā€¦
    corecore