127 research outputs found

    Emotional quantification of soundscapes by learning between samples

    Get PDF
    Predicting the emotional responses of humans to soundscapes is a relatively recent field of research coming with a wide range of promising applications. This work presents the design of two convolutional neural networks, namely ArNet and ValNet, each one responsible for quantifying arousal and valence evoked by soundscapes. We build on the knowledge acquired from the application of traditional machine learning techniques on the specific domain, and design a suitable deep learning framework. Moreover, we propose the usage of artificially created mixed soundscapes, the distributions of which are located between the ones of the available samples, a process that increases the variance of the dataset leading to significantly better performance. The reported results outperform the state of the art on a soundscape dataset following Schafer\u2019s standardized categorization considering both sound\u2019s identity and the respective listening context

    A transfer learning framework for predicting the emotional content of generalized sound events

    Get PDF
    Predicting the emotions evoked by generalized sound events is a relatively recent research domain which still needs attention. In this work a framework aiming to reveal potential similarities existing during the perception of emotions evoked by sound events and songs is presented. To this end the following are proposed: (a) the usage of temporal modulation features, (b) a transfer learning module based on an echo state network, and (c) a k-medoids clustering algorithm predicting valence and arousal measurements associated with generalized sound events. The effectiveness of the proposed solution is demonstrated after a thoroughly designed experimental phase employing both sound and music data. The results demonstrate the importance of transfer learning in the specific field and encourage further research on approaches which manage the problem in a synergistic way

    Ubiquitous Technologies for Emotion Recognition

    Get PDF
    Emotions play a very important role in how we think and behave. As such, the emotions we feel every day can compel us to act and influence the decisions and plans we make about our lives. Being able to measure, analyze, and better comprehend how or why our emotions may change is thus of much relevance to understand human behavior and its consequences. Despite the great efforts made in the past in the study of human emotions, it is only now, with the advent of wearable, mobile, and ubiquitous technologies, that we can aim to sense and recognize emotions, continuously and in real time. This book brings together the latest experiences, findings, and developments regarding ubiquitous sensing, modeling, and the recognition of human emotions

    Emotion and Stress Recognition Related Sensors and Machine Learning Technologies

    Get PDF
    This book includes impactful chapters which present scientific concepts, frameworks, architectures and ideas on sensing technologies and machine learning techniques. These are relevant in tackling the following challenges: (i) the field readiness and use of intrusive sensor systems and devices for capturing biosignals, including EEG sensor systems, ECG sensor systems and electrodermal activity sensor systems; (ii) the quality assessment and management of sensor data; (iii) data preprocessing, noise filtering and calibration concepts for biosignals; (iv) the field readiness and use of nonintrusive sensor technologies, including visual sensors, acoustic sensors, vibration sensors and piezoelectric sensors; (v) emotion recognition using mobile phones and smartwatches; (vi) body area sensor networks for emotion and stress studies; (vii) the use of experimental datasets in emotion recognition, including dataset generation principles and concepts, quality insurance and emotion elicitation material and concepts; (viii) machine learning techniques for robust emotion recognition, including graphical models, neural network methods, deep learning methods, statistical learning and multivariate empirical mode decomposition; (ix) subject-independent emotion and stress recognition concepts and systems, including facial expression-based systems, speech-based systems, EEG-based systems, ECG-based systems, electrodermal activity-based systems, multimodal recognition systems and sensor fusion concepts and (x) emotion and stress estimation and forecasting from a nonlinear dynamical system perspective

    On the endogenous generation of emotion

    No full text

    The neural basis for understanding imitation-induced musical meaning: the role of the human mirror system

    Get PDF
    Music can convey meanings by imitating phenomena of the extramusical world, and these imitation-induced musical meanings can be understood by listeners. Although the human mirror system (HMS) is implicated in imitation, little is known about the HMS’s role in making sense of meaning that derives from musical imitation. To answer this question, we used fMRI to examine listeners’ brain activities during the processing of imitation-induced musical meaning with a cross-modal semantic priming paradigm. Eleven normal individuals and 11 individuals with congenital amusia, a neurodevelopmental disorder of musical processing, participated in the experiment. Target pictures with either an upward or downward movement were primed by semantically congruent or incongruent melodic sequences characterized by the direction of pitch change (upward or downward). When contrasting the incongruent with the congruent condition between the two groups, we found greater activations in the left supramarginal gyrus/inferior parietal lobule and inferior frontal gyrus in normals but not in amusics. The implications of these findings in terms of the role of the HMS in understanding imitation-induced musical meaning are discussed

    A speaker classification framework for non-intrusive user modeling : speech-based personalization of in-car services

    Get PDF
    Speaker Classification, i.e. the automatic detection of certain characteristics of a person based on his or her voice, has a variety of applications in modern computer technology and artificial intelligence: As a non-intrusive source for user modeling, it can be employed for personalization of human-machine interfaces in numerous domains. This dissertation presents a principled approach to the design of a novel Speaker Classification system for automatic age and gender recognition which meets these demands. Based on literature studies, methods and concepts dealing with the underlying pattern recognition task are developed. The final system consists of an incremental GMM-SVM supervector architecture with several optimizations. An extensive data-driven experiment series explores the parameter space and serves as evaluation of the component. Further experiments investigate the language-independence of the approach. As an essential part of this thesis, a framework is developed that implements all tasks associated with the design and evaluation of Speaker Classification in an integrated development environment that is able to generate efficient runtime modules for multiple platforms. Applications from the automotive field and other domains demonstrate the practical benefit of the technology for personalization, e.g. by increasing local danger warning lead time for elderly drivers.Die Sprecherklassifikation, also die automatische Erkennung bestimmter Merkmale einer Person anhand ihrer Stimme, besitzt eine Vielzahl von Anwendungsmöglichkeiten in der modernen Computertechnik und Künstlichen Intelligenz: Als nicht-intrusive Wissensquelle für die Benutzermodellierung kann sie zur Personalisierung in vielen Bereichen eingesetzt werden. In dieser Dissertation wird ein fundierter Ansatz zum Entwurf eines neuartigen Sprecherklassifikationssystems zur automatischen Bestimmung von Alter und Geschlecht vorgestellt, welches diese Anforderungen erfüllt. Ausgehend von Literaturstudien werden Konzepte und Methoden zur Behandlung des zugrunde liegenden Mustererkennungsproblems entwickelt, welche zu einer inkrementell arbeitenden GMM-SVM-Supervector-Architektur mit diversen Optimierungen führen. Eine umfassende datengetriebene Experimentalreihe dient der Erforschung des Parameterraumes und zur Evaluierung der Komponente. Weitere Studien untersuchen die Sprachunabhängigkeit des Ansatzes. Als wesentlicher Bestandteil der Arbeit wird ein Framework entwickelt, das alle im Zusammenhang mit Entwurf und Evaluierung von Sprecherklassifikation anfallenden Aufgaben in einer integrierten Entwicklungsumgebung implementiert, welche effiziente Laufzeitmodule für verschiedene Plattformen erzeugen kann. Anwendungen aus dem Automobilbereich und weiteren Domänen demonstrieren den praktischen Nutzen der Technologie zur Personalisierung, z.B. indem die Vorlaufzeit von lokalen Gefahrenwarnungen für ältere Fahrer erhöht wird
    • …
    corecore