6,745 research outputs found

    Music Source Separation in the Waveform Domain

    Get PDF
    Source separation for music is the task of isolating contributions, or stems, from different instruments recorded individually and arranged together to form a song. Such components include voice, bass, drums and any other accompaniments. Contrarily to many audio synthesis tasks where the best performances are achieved by models that directly generate the waveform, the state-of-the-art in source separation for music is to compute masks on the magnitude spectrum. In this paper, we first show that an adaptation of Conv-Tasnet (Luo & Mesgarani, 2019), a waveform-to-waveform model for source separation for speech, significantly beats the state-of-the-art on the MusDB dataset, the standard benchmark of multi-instrument source separation. Second, we observe that Conv-Tasnet follows a masking approach on the input signal, which has the potential drawback of removing parts of the relevant source without the capacity to reconstruct it. We propose Demucs, a new waveform-to-waveform model, which has an architecture closer to models for audio generation with more capacity on the decoder. Experiments on the MusDB dataset show that Demucs beats previously reported results in terms of signal to distortion ratio (SDR), but lower than Conv-Tasnet. Human evaluations show that Demucs has significantly higher quality (as assessed by mean opinion score) than Conv-Tasnet, but slightly more contamination from other sources, which explains the difference in SDR. Additional experiments with a larger dataset suggest that the gap in SDR between Demucs and Conv-Tasnet shrinks, showing that our approach is promising

    Music Source Separation in the Waveform Domain

    Get PDF
    Source separation for music is the task of isolating contributions, or stems, from different instruments recorded individually and arranged together to form a song. Such components include voice, bass, drums and any other accompaniments. Contrarily to many audio synthesis tasks where the best performances are achieved by models that directly generate the waveform, the state-of-the-art in source separation for music is to compute masks on the magnitude spectrum. In this paper, we first show that an adaptation of Conv-Tasnet (Luo & Mesgarani, 2019), a waveform-to-waveform model for source separation for speech, significantly beats the state-of-the-art on the MusDB dataset, the standard benchmark of multi-instrument source separation. Second, we observe that Conv-Tasnet follows a masking approach on the input signal, which has the potential drawback of removing parts of the relevant source without the capacity to reconstruct it. We propose Demucs, a new waveform-to-waveform model, which has an architecture closer to models for audio generation with more capacity on the decoder. Experiments on the MusDB dataset show that Demucs beats previously reported results in terms of signal to distortion ratio (SDR), but lower than Conv-Tasnet. Human evaluations show that Demucs has significantly higher quality (as assessed by mean opinion score) than Conv-Tasnet, but slightly more contamination from other sources, which explains the difference in SDR. Additional experiments with a larger dataset suggest that the gap in SDR between Demucs and Conv-Tasnet shrinks, showing that our approach is promising

    Music Source Separation in the Waveform Domain

    Get PDF
    Source separation for music is the task of isolating contributions, or stems, from different instruments recorded individually and arranged together to form a song. Such components include voice, bass, drums and any other accompaniments.Contrarily to many audio synthesis tasks where the best performances are achieved by models that directly generate the waveform, the state-of-the-art in source separation for music is to compute masks on the magnitude spectrum. In this paper, we compare two waveform domain architectures. We first adapt Conv-Tasnet, initially developed for speech source separation,to the task of music source separation. While Conv-Tasnet beats many existing spectrogram-domain methods, it suffersfrom significant artifacts, as shown by human evaluations. We propose instead Demucs, a novel waveform-to-waveform model,with a U-Net structure and bidirectional LSTM.Experiments on the MusDB dataset show that, with proper data augmentation, Demucs beats allexisting state-of-the-art architectures, including Conv-Tasnet, with 6.3 SDR on average, (and up to 6.8 with 150 extra training songs, even surpassing the IRM oracle for the bass source).Using recent development in model quantization, Demucs can be compressed down to 120MBwithout any loss of accuracy.We also provide human evaluations, showing that Demucs benefit from a large advantagein terms of the naturalness of the audio. However, it suffers from some bleeding,especially between the vocals and other source

    Acoustically Inspired Probabilistic Time-domain Music Transcription and Source Separation.

    Get PDF
    PhD ThesisAutomatic music transcription (AMT) and source separation are important computational tasks, which can help to understand, analyse and process music recordings. The main purpose of AMT is to estimate, from an observed audio recording, a latent symbolic representation of a piece of music (piano-roll). In this sense, in AMT the duration and location of every note played is reconstructed from a mixture recording. The related task of source separation aims to estimate the latent functions or source signals that were mixed together in an audio recording. This task requires not only the duration and location of every event present in the mixture, but also the reconstruction of the waveform of all the individual sounds. Most methods for AMT and source separation rely on the magnitude of time-frequency representations of the analysed recording, i.e., spectrograms, and often arbitrarily discard phase information. On one hand, this decreases the time resolution in AMT. On the other hand, discarding phase information corrupts the reconstruction in source separation, because the phase of each source-spectrogram must be approximated. There is thus a need for models that circumvent phase approximation, while operating at sample-rate resolution. This thesis intends to solve AMT and source separation together from an unified perspective. For this purpose, Bayesian non-parametric signal processing, covariance kernels designed for audio, and scalable variational inference are integrated to form efficient and acoustically-inspired probabilistic models. To circumvent phase approximation while keeping sample-rate resolution, AMT and source separation are addressed from a Bayesian time-domain viewpoint. That is, the posterior distribution over the waveform of each sound event in the mixture is computed directly from the observed data. For this purpose, Gaussian processes (GPs) are used to define priors over the sources/pitches. GPs are probability distributions over functions, and its kernel or covariance determines the properties of the functions sampled from a GP. Finally, the GP priors and the available data (mixture recording) are combined using Bayes' theorem in order to compute the posterior distributions over the sources/pitches. Although the proposed paradigm is elegant, it introduces two main challenges. First, as mentioned before, the kernel of the GP priors determines the properties of each source/pitch function, that is, its smoothness, stationariness, and more importantly its spectrum. Consequently, the proposed model requires the design of flexible kernels, able to learn the rich frequency content and intricate properties of audio sources. To this end, spectral mixture (SM) kernels are studied, and the Mat ern spectral mixture (MSM) kernel is introduced, i.e. a modified version of the SM covariance function. The MSM kernel introduces less strong smoothness, thus it is more suitable for modelling physical processes. Second, the computational complexity of GP inference scales cubically with the number of audio samples. Therefore, the application of GP models to large audio signals becomes intractable. To overcome this limitation, variational inference is used to make the proposed model scalable and suitable for signals in the order of hundreds of thousands of data points. The integration of GP priors, kernels intended for audio, and variational inference could enable AMT and source separation time-domain methods to reconstruct sources and transcribe music in an efficient and informed manner. In addition, AMT and source separation are current challenges, because the spectra of the sources/pitches overlap with each other in intricate ways. Thus, the development of probabilistic models capable of differentiating sources/pitches in the time domain, despite the high similarity between their spectra, opens the possibility to take a step towards solving source separation and automatic music transcription. We demonstrate the utility of our methods using real and synthesized music audio datasets for various types of musical instruments

    Deep Learning for Audio Signal Processing

    Full text link
    Given the recent surge in developments of deep learning, this article provides a review of the state-of-the-art deep learning techniques for audio signal processing. Speech, music, and environmental sound processing are considered side-by-side, in order to point out similarities and differences between the domains, highlighting general methods, problems, key references, and potential for cross-fertilization between areas. The dominant feature representations (in particular, log-mel spectra and raw waveform) and deep learning models are reviewed, including convolutional neural networks, variants of the long short-term memory architecture, as well as more audio-specific neural network models. Subsequently, prominent deep learning application areas are covered, i.e. audio recognition (automatic speech recognition, music information retrieval, environmental sound detection, localization and tracking) and synthesis and transformation (source separation, audio enhancement, generative models for speech, sound, and music synthesis). Finally, key issues and future questions regarding deep learning applied to audio signal processing are identified.Comment: 15 pages, 2 pdf figure
    • …
    corecore