3,759 research outputs found

    Timbre-invariant Audio Features for Style Analysis of Classical Music

    Get PDF
    Copyright: (c) 2014 Christof WeiĂź et al. This is an open-access article distributed under the terms of the Creative Commons Attribution 3.0 Unported License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original author and source are credited

    Enhancing timbre model using MFCC and its time derivatives for music similarity estimation

    No full text
    One of the popular methods for content-based music similarity estimation is to model timbre with MFCC as a single multivariate Gaussian with full covariance matrix, then use symmetric Kullback-Leibler divergence. From the field of speech recognition, we propose to use the same approach on the MFCCs’ time derivatives to enhance the timbre model. The Gaussian models for the delta and acceleration coefficients are used to create their respective distance matrix. The distance matrices are then combined linearly to form a full distance matrix for music similarity estimation. In our experiments on two datasets, our novel approach performs better than using MFCC alone.Moreover, performing genre classification using k-NN showed that the accuracies obtained are already close to the state-of-the-art

    Predicting Audio Advertisement Quality

    Full text link
    Online audio advertising is a particular form of advertising used abundantly in online music streaming services. In these platforms, which tend to host tens of thousands of unique audio advertisements (ads), providing high quality ads ensures a better user experience and results in longer user engagement. Therefore, the automatic assessment of these ads is an important step toward audio ads ranking and better audio ads creation. In this paper we propose one way to measure the quality of the audio ads using a proxy metric called Long Click Rate (LCR), which is defined by the amount of time a user engages with the follow-up display ad (that is shown while the audio ad is playing) divided by the impressions. We later focus on predicting the audio ad quality using only acoustic features such as harmony, rhythm, and timbre of the audio, extracted from the raw waveform. We discuss how the characteristics of the sound can be connected to concepts such as the clarity of the audio ad message, its trustworthiness, etc. Finally, we propose a new deep learning model for audio ad quality prediction, which outperforms the other discussed models trained on hand-crafted features. To the best of our knowledge, this is the first large-scale audio ad quality prediction study.Comment: WSDM '18 Proceedings of the Eleventh ACM International Conference on Web Search and Data Mining, 9 page

    Polyphonic music information retrieval based on multi-label cascade classification system

    Get PDF
    Recognition and separation of sounds played by various instruments is very useful in labeling audio files with semantic information. This is a non-trivial task requiring sound analysis, but the results can aid automatic indexing and browsing music data when searching for melodies played by user specified instruments. Melody match based on pitch detection technology has drawn much attention and a lot of MIR systems have been developed to fulfill this task. However, musical instrument recognition remains an unsolved problem in the domain. Numerous approaches on acoustic feature extraction have already been proposed for timbre recognition. Unfortunately, none of those monophonic timbre estimation algorithms can be successfully applied to polyphonic sounds, which are the more usual cases in the real music world. This has stimulated the research on multi-labeled instrument classification and new features development for content-based automatic music information retrieval. The original audio signals are the large volume of unstructured sequential values, which are not suitable for traditional data mining algorithms; while the acoustical features are sometime not sufficient for instrument recognition in polyphonic sounds because they are higher-level representatives of raw signal lacking details of original information. In order to capture the patterns which evolve on the time scale, new temporal features are introduced to supply more temporal information for the timbre recognition. We will introduce the multi-labeled classification system to estimate multiple timbre information from the polyphonic sound by classification based on acoustic features and short-term power spectrum matching. In order to achieve higher estimation rate, we introduced the hierarchically structured cascade classification system under the inspiration of the human perceptual process. This cascade classification system makes a first estimate on the higher level decision attribute, which stands for the musical instrument family. Then, the further estimation is done within that specific family range. Experiments showed better performance of a hierarchical system than the traditional flat classification method which directly estimates the instrument without higher level of family information analysis. Traditional hierarchical structures were constructed in human semantics, which are meaningful from human perspective but not appropriate for the cascade system. We introduce the new hierarchical instrument schema according to the clustering results of the acoustic features. This new schema better describes the similarity among different instruments or among different playing techniques of the same instrument. The classification results show the higher accuracy of cascade system with the new schema compared to the traditional schemas. The query answering system is built based on the cascade classifier

    Listening to features

    Get PDF
    This work explores nonparametric methods which aim at synthesizing audio from low-dimensionnal acoustic features typically used in MIR frameworks. Several issues prevent this task to be straightforwardly achieved. Such features are designed for analysis and not for synthesis, thus favoring high-level description over easily inverted acoustic representation. Whereas some previous studies already considered the problem of synthesizing audio from features such as Mel-Frequency Cepstral Coefficients, they mainly relied on the explicit formula used to compute those features in order to inverse them. Here, we instead adopt a simple blind approach, where arbitrary sets of features can be used during synthesis and where reconstruction is exemplar-based. After testing the approach on a speech synthesis from well known features problem, we apply it to the more complex task of inverting songs from the Million Song Dataset. What makes this task harder is twofold. First, that features are irregularly spaced in the temporal domain according to an onset-based segmentation. Second the exact method used to compute these features is unknown, although the features for new audio can be computed using their API as a black-box. In this paper, we detail these difficulties and present a framework to nonetheless attempting such synthesis by concatenating audio samples from a training dataset, whose features have been computed beforehand. Samples are selected at the segment level, in the feature space with a simple nearest neighbor search. Additionnal constraints can then be defined to enhance the synthesis pertinence. Preliminary experiments are presented using RWC and GTZAN audio datasets to synthesize tracks from the Million Song Dataset.Comment: Technical Repor
    • …
    corecore