896 research outputs found

    Doctor of Philosophy

    Get PDF
    dissertationImage-based biomechanics, particularly numerical modeling using subject-specific data obtained via imaging, has proven useful for elucidating several biomechanical processes, such as prediction of deformation due to external loads, applicable to both normal function and pathophysiology of various organs. As the field evolves towards applications that stretch the limits of imaging hardware and acquisition time, the information traditionally expected as input for numerical routines often becomes incomplete or ambiguous, and requires specific acquisition and processing strategies to ensure physical accuracy and compatibility with predictive mathematical modeling. These strategies, often derivatives or specializations of traditional mechanics, effectively extend the nominal capability of medical imaging hardware providing subject-specific information coupled with the option of using the results for predictive numerical simulations. This research deals with the development of tools for extracting mechanical measurements from a finite set of imaging data and finite element analysis in the context of constructing structural atlases of the heart, understanding the biomechanics of the venous vasculature, and right ventricular failure. The tools include: (1) application of Hyperelastic Warping image registration to displacement-encoded MRI for reconstructing absolute displacement fields, (2) combination of imaging and a material parameter identification approach to measure morphology, deformation, and mechanical properties of vascular tissue, and (3) extrapolation of diffusion tensor MRI acquired at a single time point for the prediction the structural changes across the cardiac cycle with mechanical simulations. Selected tools were then applied to evaluate structural changes in a reversible animal model for right ventricular failure due to pressure overload

    A biomechanical approach for real-time tracking of lung tumors during External Beam Radiation Therapy (EBRT)

    Get PDF
    Lung cancer is the most common cause of cancer related death in both men and women. Radiation therapy is widely used for lung cancer treatment. However, this method can be challenging due to respiratory motion. Motion modeling is a popular method for respiratory motion compensation, while biomechanics-based motion models are believed to be more robust and accurate as they are based on the physics of motion. In this study, we aim to develop a biomechanics-based lung tumor tracking algorithm which can be used during External Beam Radiation Therapy (EBRT). An accelerated lung biomechanical model can be used during EBRT only if its boundary conditions (BCs) are defined in a way that they can be updated in real-time. As such, we have developed a lung finite element (FE) model in conjunction with a Neural Networks (NNs) based method for predicting the BCs of the lung model from chest surface motion data. To develop the lung FE model for tumor motion prediction, thoracic 4D CT images of lung cancer patients were processed to capture the lung and diaphragm geometry, trans-pulmonary pressure, and diaphragm motion. Next, the chest surface motion was obtained through tracking the motion of the ribcage in 4D CT images. This was performed to simulate surface motion data that can be acquired using optical tracking systems. Finally, two feedforward NNs were developed, one for estimating the trans-pulmonary pressure and another for estimating the diaphragm motion from chest surface motion data. The algorithm development consists of four steps of: 1) Automatic segmentation of the lungs and diaphragm, 2) diaphragm motion modelling using Principal Component Analysis (PCA), 3) Developing the lung FE model, and 4) Using two NNs to estimate the trans-pulmonary pressure values and diaphragm motion from chest surface motion data. The results indicate that the Dice similarity coefficient between actual and simulated tumor volumes ranges from 0.76±0.04 to 0.91±0.01, which is favorable. As such, real-time lung tumor tracking during EBRT using the proposed algorithm is feasible. Hence, further clinical studies involving lung cancer patients to assess the algorithm performance are justified

    A Heterogeneous and Multi-Range Soft-Tissue Deformation Model for Applications in Adaptive Radiotherapy

    Get PDF
    During fractionated radiotherapy, anatomical changes result in uncertainties in the applied dose distribution. With increasing steepness of applied dose gradients, the relevance of patient deformations increases. Especially in proton therapy, small anatomical changes in the order of millimeters can result in large range uncertainties and therefore in substantial deviations from the planned dose. To quantify the anatomical changes, deformation models are required. With upcoming MR-guidance, the soft-tissue deformations gain visibility, but so far only few soft-tissue models meeting the requirements of high-precision radiotherapy exist. Most state-of-the-art models either lack anatomical detail or exhibit long computation times. In this work, a fast soft-tissue deformation model is developed which is capable of considering tissue properties of heterogeneous tissue. The model is based on the chainmail (CM)-concept, which is improved by three basic features. For the first time, rotational degrees of freedom are introduced into the CM-concept to improve the characteristic deformation behavior. A novel concept for handling multiple deformation initiators is developed to cope with global deformation input. And finally, a concept for handling various shapes of deformation input is proposed to provide a high flexibility concerning the design of deformation input. To demonstrate the model flexibility, it was coupled to a kinematic skeleton model for the head and neck region, which provides anatomically correct deformation input for the bones. For exemplary patient CTs, the combined model was shown to be capable of generating artificially deformed CT images with realistic appearance. This was achieved for small-range deformations in the order of interfractional deformations, as well as for large-range deformations like an arms-up to arms-down deformation, as can occur between images of different modalities. The deformation results showed a strong improvement in biofidelity, compared to the original chainmail-concept, as well as compared to clinically used image-based deformation methods. The computation times for the model are in the order of 30 min for single-threaded calculations, by simple code parallelization times in the order of 1 min can be achieved. Applications that require realistic forward deformations of CT images will benefit from the improved biofidelity of the developed model. Envisioned applications are the generation of plan libraries and virtual phantoms, as well as data augmentation for deep learning approaches. Due to the low computation times, the model is also well suited for image registration applications. In this context, it will contribute to an improved calculation of accumulated dose, as is required in high-precision adaptive radiotherapy

    Development of an Atlas-Based Segmentation of Cranial Nerves Using Shape-Aware Discrete Deformable Models for Neurosurgical Planning and Simulation

    Get PDF
    Twelve pairs of cranial nerves arise from the brain or brainstem and control our sensory functions such as vision, hearing, smell and taste as well as several motor functions to the head and neck including facial expressions and eye movement. Often, these cranial nerves are difficult to detect in MRI data, and thus represent problems in neurosurgery planning and simulation, due to their thin anatomical structure, in the face of low imaging resolution as well as image artifacts. As a result, they may be at risk in neurosurgical procedures around the skull base, which might have dire consequences such as the loss of eyesight or hearing and facial paralysis. Consequently, it is of great importance to clearly delineate cranial nerves in medical images for avoidance in the planning of neurosurgical procedures and for targeting in the treatment of cranial nerve disorders. In this research, we propose to develop a digital atlas methodology that will be used to segment the cranial nerves from patient image data. The atlas will be created from high-resolution MRI data based on a discrete deformable contour model called 1-Simplex mesh. Each of the cranial nerves will be modeled using its centerline and radius information where the centerline is estimated in a semi-automatic approach by finding a shortest path between two user-defined end points. The cranial nerve atlas is then made more robust by integrating a Statistical Shape Model so that the atlas can identify and segment nerves from images characterized by artifacts or low resolution. To the best of our knowledge, no such digital atlas methodology exists for segmenting nerves cranial nerves from MRI data. Therefore, our proposed system has important benefits to the neurosurgical community

    The biomechanical structure of the seahorse tail as a source of inspiration for industrial design

    Get PDF

    Three-dimensional cardiac computational modelling: methods, features and applications

    Get PDF
    [EN] The combination of computational models and biophysical simulations can help to interpret an array of experimental data and contribute to the understanding, diagnosis and treatment of complex diseases such as cardiac arrhythmias. For this reason, three-dimensional (3D) cardiac computational modelling is currently a rising field of research. The advance of medical imaging technology over the last decades has allowed the evolution from generic to patient-specific 3D cardiac models that faithfully represent the anatomy and different cardiac features of a given alive subject. Here we analyse sixty representative 3D cardiac computational models developed and published during the last fifty years, describing their information sources, features, development methods and online availability. This paper also reviews the necessary components to build a 3D computational model of the heart aimed at biophysical simulation, paying especial attention to cardiac electrophysiology (EP), and the existing approaches to incorporate those components. We assess the challenges associated to the different steps of the building process, from the processing of raw clinical or biological data to the final application, including image segmentation, inclusion of substructures and meshing among others. We briefly outline the personalisation approaches that are currently available in 3D cardiac computational modelling. Finally, we present examples of several specific applications, mainly related to cardiac EP simulation and model-based image analysis, showing the potential usefulness of 3D cardiac computational modelling into clinical environments as a tool to aid in the prevention, diagnosis and treatment of cardiac diseases.This work was partially supported by the "VI Plan Nacional de Investigacion Cientifica, Desarrollo e Innovacion Tecnologica" from the Ministerio de Economia y Competitividad of Spain (TIN2012-37546-C03-01 and TIN2011-28067) and the European Commission (European Regional Development Funds - ERDF - FEDER) and by "eTorso project" (GVA/2013-001404) from the Generalitat Valenciana (Spain). ALP is financially supported by the program "Ayudas para contratos predoctorales para la formacion de doctores" from the Ministerio de Economia y Competitividad of Spain (BES-2013-064089).López Pérez, AD.; Sebastián Aguilar, R.; Ferrero De Loma-Osorio, JM. (2015). Three-dimensional cardiac computational modelling: methods, features and applications. BioMedical Engineering OnLine. 14(35):1-31. https://doi.org/10.1186/s12938-015-0033-5S1311435Koushanpour E, Collings W: Validation and dynamic applications of an ellipsoid model of the left ventricle. J Appl Physiol 1966, 21: 1655–61.Ghista D, Sandler H: An analytic elastic-viscoelastic model for the shape and the forces in the left ventricle. J Biomech 1969, 2: 35–47.Janz RF, Grimm AF: Finite-Element Model for the Mechanical Behavior of the Left Ventricle: prediction of deformation in the potassium-arrested rat heart. Circ Res 1972, 30: 244–52.Van den Broek JHJM, Van den Broek MHLM: Application of an ellipsoidal heart model in studying left ventricular contractions. J Biomech 1980, 13: 493–503.Colli Franzone P, Guerri L, Pennacchio M, Taccardi B: Spread of excitation in 3-D models of the anisotropic cardiac tissue. II. Effects of fiber architecture and ventricular geometry. Math Biosci 1998, 147: 131–71.Kerckhoffs RCP, Bovendeerd PHM, Kotte JCS, Prinzen FW, Smits K, Arts T: Homogeneity of cardiac contraction despite physiological asynchrony of depolarization: a model study. Ann Biomed Eng 2003, 31: 536–47.Sermesant M, Moireau P, Camara O, Sainte-Marie J, Andriantsimiavona R, Cimrman R, et al.: Cardiac function estimation from MRI using a heart model and data assimilation: advances and difficulties. Med Image Anal 2006, 10: 642–56.Okajima M, Fujino T, Kobayashi T, Yamada K: Computer simulation of the propagation process in excitation of the ventricles. Circ Res 1968, 23: 203–11.Horan LG, Hand RC, Johnson JC, Sridharan MR, Rankin TB, Flowers NC: A theoretical examination of ventricular repolarization and the secondary T wave. Circ Res 1978, 42: 750–7.Miller WT, Geselowitz DB: Simulation studies of the electrocardiogram. I. The normal heart. Circ Res 1978, 43: 301–15.Vetter FJ, McCulloch AD: Three-dimensional analysis of regional cardiac function: a model of rabbit ventricular anatomy. Prog Biophys Mol Biol 1998, 69: 157–83.Nielsen PMF, LeGrice IJ, Smaill BH, Hunter PJ: Mathematical model of geometry and fibrous structure of the heart. Am J Physiol Heart Circ Physiol 1991, 260: H1365–78.Stevens C, Remme E, LeGrice I, Hunter P: Ventricular mechanics in diastole: material parameter sensitivity. J Biomech 2003, 36: 737–48.Aoki M, Okamoto Y, Musha T, Harumi KI: Three-dimensional simulation of the ventricular depolarization and repolarization processes and body surface potentials: normal heart and bundle branch block. IEEE Trans Biomed Eng 1987, 34: 454–62.Thakor NV, Eisenman LN: Three-dimensional computer model of the heart: fibrillation induced by extrastimulation. Comput Biomed Res 1989, 22: 532–45.Freudenberg J, Schiemann T, Tiede U, Höhne KH: Simulation of cardiac excitation patterns in a three-dimensional anatomical heart atlas. Comput Biol Med 2000, 30: 191–205.Trunk P, Mocnik J, Trobec R, Gersak B: 3D heart model for computer simulations in cardiac surgery. Comput Biol Med 2007, 37: 1398–403.Siregar P, Sinteff JP, Julen N, Le Beux P: An interactive 3D anisotropic cellular automata model of the heart. Comput Biomed Res 1998, 31: 323–47.Harrild DM, Henriquez CS: A computer model of normal conduction in the human atria. Circ Res 2000, 87: e25–36.Bodin ON, Kuz’min AV: Synthesis of a realistic model of the surface of the heart. Biomed Eng (NY) 2006, 40: 280–3.Ruiz-Villa CA, Tobón C, Rodríguez JF, Ferrero JM, Hornero F, Saíz J: Influence of atrial dilatation in the generation of re-entries caused by ectopic activity in the left atrium. Comput Cardiol 2009, 36: 457–60.Blanc O, Virag N, Vesin JM, Kappenberger L: A computer model of human atria with reasonable computation load and realistic anatomical properties. IEEE Trans Biomed Eng 2001, 48: 1229–37.Zemlin CW, Herzel H, Ho SY, Panfilov AV: A realistic and efficient model of excitation propagation in the human atria. In Comput Simul Exp Assess Card Electrophysiol. Edited by: Virag N, Kappenberger L, Blanc O. Futura Publishing Company, Inc, Arkmonk, New York; 2001:29–34.Seemann G, Höper C, Sachse FB, Dössel O, Holden AV, Zhang H: Heterogeneous three-dimensional anatomical and electrophysiological model of human atria. Philos Trans R Soc A Math Phys Eng Sci 2006, 364: 1465–81.Zhao J, Butters TD, Zhang H, LeGrice IJ, Sands GB, Smaill BH: Image-based model of atrial anatomy and electrical activation: a computational platform for investigating atrial arrhythmia. IEEE Trans Med Imaging 2013, 32: 18–27.Creswell LL, Wyers SG, Pirolo JS, Perman WH, Vannier MW, Pasque MK: Mathematical modeling of the heart using magnetic resonance imaging. IEEE Trans Med Imaging 1992, 11: 581–9.Lorange M, Gulrajani RM: A computer heart model incorporating anisotropic propagation: I. Model construction and simulation of normal activation. J Electrocardiol 1993, 26: 245–61.Winslow RL, Scollan DF, Holmes A, Yung CK, Zhang J, Jafri MS: Electrophysiological modeling of cardiac ventricular function: from cell to organ. Annu Rev Biomed Eng 2000, 2: 119–55.Virag N, Jacquemet V, Henriquez CS, Zozor S, Blanc O, Vesin JM, et al.: Study of atrial arrhythmias in a computer model based on magnetic resonance images of human atria. Chaos 2002, 12: 754–63.Helm PA, Tseng HJ, Younes L, McVeigh ER, Winslow RL: Ex vivo 3D diffusion tensor imaging and quantification of cardiac laminar structure. Magn Reson Med 2005, 54: 850–9.Arevalo HJ, Helm PA, Trayanova NA: Development of a model of the infarcted canine heart that predicts arrhythmia generation from specific cardiac geometry and scar distribution. Comput Cardiol 2008, 35: 497–500.Plotkowiak M, Rodriguez B, Plank G, Schneider JE, Gavaghan D, Kohl P, et al.: High performance computer simulations of cardiac electrical function based on high resolution MRI datasets. In Int Conf Comput Sci 2008, LNCS 5101. Springer–Verlag, Berlin Heidelberg; 2008:571–80.Heidenreich EA, Ferrero JM, Doblaré M, Rodríguez JF: Adaptive macro finite elements for the numerical solution of monodomain equations in cardiac electrophysiology. Ann Biomed Eng 2010, 38: 2331–45.Gurev V, Lee T, Constantino J, Arevalo H, Trayanova NA: Models of cardiac electromechanics based on individual hearts imaging data: Image-based electromechanical models of the heart. Biomech Model Mechanobiol 2011, 10: 295–306.Deng D, Jiao P, Ye X, Xia L: An image-based model of the whole human heart with detailed anatomical structure and fiber orientation. Comput Math Methods Med 2012, 2012: 16.Aslanidi OV, Nikolaidou T, Zhao J, Smaill BH, Gilbert SH, Holden AV, et al.: Application of micro-computed tomography with iodine staining to cardiac imaging, segmentation, and computational model development. IEEE Trans Med Imaging 2013, 32: 8–17.Haddad R, Clarysse P, Orkisz M, Croisille P, Revel D, Magnin IE: A realistic anthropomorphic numerical model of the beating heart. In Funct Imaging Model Heart 2005, LNCS 3504. Springer–Verlag, Berlin Heidelberg; 2005:384–93.Appleton B, Wei Q, Liu N, Xia L, Crozier S, Liu F, et al.: An electrical heart model incorporating real geometry and motion. In 27th Annu Int Conf Eng Med Biol Soc (IEEE-EMBS 2005). IEEE, Shanghai, China; 2006:345–8.Niederer S, Rhode K, Razavi R, Smith N: The importance of model parameters and boundary conditions in whole organ models of cardiac contraction. In Funct Imaging Model Heart 2009, LNCS 5528. Springer–Verlag, Berlin Heidelberg; 2009:348–56.Yang G, Toumoulin C, Coatrieux JL, Shu H, Luo L, Boulmier D: A 3D static heart model from a MSCT data set. In 27th Annu Int Conf IEEE Eng Med Biol Soc (IEEE-EMBS 2005). IEEE, Shangai, China; 2006:5499–502.Romero D, Sebastian R, Bijnens BH, Zimmerman V, Boyle PM, Vigmond EJ, et al.: Effects of the purkinje system and cardiac geometry on biventricular pacing: a model study. Ann Biomed Eng 2010, 38: 1388–98.Lorenzo-Valdés M, Sanchez-Ortiz GI, Mohiaddin R, Rueckert D: Atlas-based segmentation and tracking of 3D cardiac MR images using non-rigid registration. In Med Image Comput Comput Assist Interv 2002, LNCS 2488. Springer–Verlag, Berlin Heidelberg; 2002:642–50.Ordas S, Oubel E, Sebastian R, Frangi AF: Computational anatomy atlas of the heart. In 5th Int Symp Image Signal Process Anal (ISPA 2007). IEEE, Istanbul, Turkey; 2007:338–42.Burton RAB, Plank G, Schneider JE, Grau V, Ahammer H, Keeling SL, et al.: Three-dimensional models of individual cardiac histoanatomy: tools and challenges. Ann N Y Acad Sci 2006, 1080: 301–19.Plank G, Burton RAB, Hales P, Bishop M, Mansoori T, Bernabeu MO, et al.: Generation of histo-anatomically representative models of the individual heart: tools and application. Philos Trans R Soc A Math Phys Eng Sci 2009, 367: 2257–92.Bishop MJ, Plank G, Burton RAB, Schneider JE, Gavaghan DJ, Grau V, et al.: Development of an anatomically detailed MRI-derived rabbit ventricular model and assessment of its impact on simulations of electrophysiological function. Am J Physiol - Heart Circ Physiol 2010, 298: H699–718.Ecabert O, Peters J, Schramm H, Lorenz C, von Berg J, Walker MJ, et al.: Automatic model-based segmentation of the heart in CT images. IEEE Trans Med Imaging 2008, 27: 1189–201.Ecabert O, Peters J, Walker MJ, Ivanc T, Lorenz C, von Berg J, et al.: Segmentation of the heart and great vessels in CT images using a model-based adaptation framework. Med Image Anal 2011, 15: 863–76.Schulte RF, Sands GB, Sachse FB, Dössel O, Pullan AJ: Creation of a human heart model and its customisation using ultrasound images. Biomed Tech Eng 2001, 46: 26–8.Wenk JF, Zhang Z, Cheng G, Malhotra D, Acevedo-Bolton G, Burger M, et al.: First finite element model of the left ventricle with mitral valve: insights into ischemic mitral regurgitation. Ann Thorac Surg 2010, 89: 1546–53.Frangi AF, Rueckert D, Schnabel JA, Niessen WJ: Automatic construction of multiple-object three-dimensional statistical shape models: application to cardiac modeling. IEEE Trans Med Imaging 2002, 21: 1151–66.Hoogendoorn C, Duchateau N, Sánchez-Quintana D, Whitmarsh T, Sukno FM, De Craene M, et al.: A high-resolution atlas and statistical model of the human heart from multislice CT. IEEE Trans Med Imaging 2013, 32: 28–44.Vadakkumpadan F, Rantner LJ, Tice B, Boyle P, Prassl AJ, Vigmond E, et al.: Image-based models of cardiac structure with applications in arrhythmia and defibrillation studies. J Electrocardiol 2009, 42: 157.Perperidis D, Mohiaddin R, Rueckert D: Construction of a 4D statistical atlas of the cardiac anatomy and its use in classification. In Med Image Comput Comput Interv 2005, LNCS 3750. Springer–Verlag, Berlin Heidelberg; 2005:402–10.Lötjönen J, Kivistö S, Koikkalainen J, Smutek D, Lauerma K: Statistical shape model of atria, ventricles and epicardium from short- and long-axis MR images. Med Image Anal 2004, 8: 371–86.Lorenz C, von Berg J: A comprehensive shape model of the heart. Med Image Anal 2006, 10: 657–70.Mansoori T, Plank G, Burton R, Schneider J, Khol P, Gavaghan D, et al.: An iterative method for registration of high-resolution cardiac histoanatomical and MRI images. In 4th IEEE Int Symp Biomed Imaging: From Nano to Macro (ISBI 2007). IEEE, Arlington, VA (USA); 2007:572–5.Gibb M, Burton RAB, Bollensdorff C, Afonso C, Mansoori T, Schotten U, et al.: Resolving the three-dimensional histology of the heart. In Comput Methods Syst Biol - Lect Notes Comput Sci 7605. Springer, Berlin Heidelberg; 2012:2–16.Burton RAB, Lee P, Casero R, Garny A, Siedlecka U, Schneider JE, et al.: Three-dimensional histology: tools and application to quantitative assessment of cell-type distribution in rabbit heart. Europace 2014,16(Suppl 4):iv86–95.Niederer SA, Shetty AK, Plank G, Bostock J, Razavi R, Smith NP, et al.: Biophysical modeling to simulate the response to multisite left ventricular stimulation using a quadripolar pacing lead. Pacing Clin Electrophysiol 2012, 35: 204–14.Weese J, Groth A, Nickisch H, Barschdorf H, Weber FM, Velut J, et al.: Generating anatomical models of the heart and the aorta from medical images for personalized physiological simulations. Med Biol Eng Comput 2013, 51: 1209–19.Gibb M, Bishop M, Burton R, Kohl P, Grau V, Plank G, et al.: The role of blood vessels in rabbit propagation dynamics and cardiac arrhythmias. In Funct Imaging Model Heart - FIMH 2009, LNCS 5528. Springer, Berlin Heidelberg; 2009:268–76.Prassl AJ, Kickinger F, Ahammer H, Grau V, Schneider JE, Hofer E, et al.: Automatically generated, anatomically accurate meshes for cardiac electrophysiology problems. IEEE Trans Biomed Eng 2009, 56: 1318–30.Dux-Santoy L, Sebastian R, Felix-Rodriguez J, Ferrero JM, Saiz J: Interaction of specialized cardiac conduction system with antiarrhythmic drugs: a simulation study. IEEE Trans Biomed Eng 2011, 58: 3475–8.Lamata P, Niederer S, Nordsletten D, Barber DC, Roy I, Hose DR, et al.: An accurate, fast and robust method to generate patient-specific cubic Hermite meshes. Med Image Anal 2011, 15: 801–13.Pathmanathan P, Cooper J, Fletcher A, Mirams G, Murray P, Osborne J, et al.: A computational study of discrete mechanical tissue models. Phys Biol 2009, 6: 036001.Niederer SA, Kerfoot E, Benson AP, Bernabeu MO, Bernus O, Bradley C, et al.: Verification of cardiac tissue electrophysiology simulators using an N-version benchmark. Philos Trans R Soc A Math Phys Eng Sci 2011, 369: 4331–51.Ten Tusscher KHWJ, Panfilov AV: Cell model for efficient simulation of wave propagation in human ventricular tissue under normal and pathological conditions. Phys Med Biol 2006, 51: 6141–56.LeGrice I, Smaill B, Chai L, Edgar S, Gavin J, Hunter P: Laminar structure of the heart: ventricular myocyte arrangement and connective tissue architecture in the dog. Am J Physiol Heart Circ Physiol 1995, 269: H571–82.Anderson RH, Smerup M, Sanchez-Quintana D, Loukas M, Lunkenheimer PP: The three-dimensional arrangement of the myocytes in the ventricular walls. Clin Anat 2009, 22: 64–76.Clerc L: Directional differences of impulse spread in trabecular muscle from mammalian heart. J Physiol 1976, 255: 335–46.Streeter DD Jr, Spotnitz HM, Patel DP, Ross J Jr, Sonnenblick EH: Fiber orientation in the canine left ventricle during diastole and systole. Circ Res 1969, 24: 339–47.Scollan D, Holmes A, Winslow R, Forder J: Histological validation of myocardial microstructure obtained from diffusion tensor magnetic resonance imaging. Am J Physiol Heart Circ Physiol 1998, 275: H2308–18.Hsu EW, Muzikant AL, Matulevicius SA, Penland RC, Henriquez CS: Magnetic resonance myocardial fiber-orientation mapping with direct histological correlation. Am J Physiol Heart Circ Physiol 1998, 274: H1627–34.Holmes AA, Scollan DF, Winslow RL: Direct histological validation of diffusion tensor MRI in formaldehyde-fixed myocardium. Magn Reson Med 2000, 44: 157–61.Sermesant M, Forest C, Pennec X, Delingette H, Ayache N: Deformable biomechanical models: application to 4D cardiac image analysis. Med Image Anal 2003, 7: 475–88.Peyrat JM, Sermesant M, Pennec X, Delingette H, Xu C, McVeigh ER, et al.: A computational framework for the statistical analysis of cardiac diffusion tensors: application to a small database of canine hearts. IEEE Trans Med Imaging 2007, 26: 1500–14.Toussaint N, Sermesant M, Stoeck CT, Kozerke S, Batchelor PG: In vivo human 3D cardiac fibre architecture: reconstruction using curvilinear interpolation of diffusion tensor images. Med Image Comput Comput Assist Interv 2010,13(Pt 1):418–25.Toussaint N, Stoeck CT, Schaeffter T, Kozerke S, Sermesant M, Batchelor PG: In vivo human cardiac fibre architecture estimation using shape-based diffusion tensor processing. Med Image Anal 2013, 17: 1243–55.Bishop MJ, Hales P, Plank G, Gavaghan DJ, Scheider J, Grau V: Comparison of rule-based and DTMRI-derived fibre architecture in a whole rat ventricular computational model. In Funct Imaging Model Heart 2009, LNCS 5528. Springer–Verlag, Berlin Heidelberg; 2009:87–96.Bayer JD, Blake RC, Plank G, Trayanova NA: A novel rule-based algorithm for assigning myocardial fiber orientation to computational heart models. Ann Biomed Eng 2012, 40: 2243–54.Dobrzynski H, Anderson RH, Atkinson A, Borbas Z, D’Souza A, Fraser JF, et al.: Structure, function and clinical relevance of the cardiac conduction system, including the atrioventricular ring and outflow tract tissues. Pharmacol Ther 2013, 139: 260–88.Tranum-Jensen J, Wilde AA, Vermeulen JT, Janse MJ: Morphology of electrophysiologically identified junctions between Purkinje fibers and ventricular muscle in rabbit and pig hearts. Circ Res 1991, 69: 429–37.Boyle PM, Deo M, Plank G, Vigmond EJ: Purkinje-mediated effects in the response of quiescent ventricles to defibrillation shocks. Ann Biomed Eng 2010, 38: 456–68.Behradfar E, Nygren A, Vigmond EJ: The role of Purkinje-myocardial coupling during ventricular arrhythmia: a modeling study. PLoS One 2014., 9: Article ID e88000DiFrancesco D, Noble D: A model of cardiac electrical activity incorporating ionic pumps and concentration changes. Philos Trans R Soc B Biol Sci 1985, 307: 353–98.Stewart P, Aslanidi OV, Noble D, Noble PJ, Boyett MR, Zhang H: Mathematical models of the electrical action potential of Purkinje fibre cells. Philos Trans R Soc A Math Phys Eng Sci 2009, 367: 2225–55.Li P, Rudy Y: A model of canine purkinje cell electrophysiology and Ca(2+) cycling: rate dependence, triggered activity, and comparison to ventricular myocytes. Circ Res 2011, 109: 71–9.Chinchapatnam P, Rhode KS, Ginks M, Mansi T, Peyrat JM, Lambiase P, et al.: Estimation of volumetric myocardial apparent conductivity from endocardial electro-anatomical mapping. In 31st Annu Int Conf IEEE Eng Med Biol Soc (EMBC 2009). IEEE, Minneapolis, MN (USA); 2009:2907–10.Durrer D, Van Dam RT, Freud GE, Janse MJ, Meijler FL, Arzbaecher RC: Total excitation of the isolated human heart. Circulation 1970, 41: 899–912.Pollard AE, Barr RC: Computer simulations of activation in an anatomically based model of the human ventricular conduction system. IEEE Trans Biomed Eng 1991, 38: 982–96.Abboud S, Berenfeld O, Sadeh D: Simulation of high-resolution QRS complex using a ventricular model with a fractal conduction system. Effects of ischemia on high-frequency QRS potentials. Circ Res 1991, 68: 1751–60.Sebastian R, Zimmerman V, Romero D, Sanchez-Quintana D, Frangi AF: Characterization and modeling of the peripheral cardiac conduction system. IEEE Trans Med Imaging 2013, 32: 45–55.Bordas R, Gillow K, Lou Q, Efimov IR, Gavaghan D, Kohl P, et al.: Rabbit-specific ventricular model of cardiac electrophysiological function including specialized conduction system. Prog Biophys Mol Biol 2011, 107: 90–100.Stephenson RS, Boyett MR, Hart G, Nikolaidou T, Cai X, Corno AF, et al.: Contrast enhanced micro-computed tomography resolves the 3-dimensional morphology of the cardiac conduction system in mammalian hearts. PLoS One 2012., 7: Article ID e35299Berenfeld O, Jalife J: Purkinje-Muscle reentry as a mechanism of polymorphic ventricular arrhythmias in a 3-dimensional model of the ventricles. Circ Res 1998, 82: 1063–77.Azzouzi A, Coudière Y, Turpault R, Zemzemi N: A mathematical model of the Purkinje-muscle junctions. Math Biosci Eng MBE 2011, 8: 915–30.Dux-Santoy L, Sebastian R, Rodriguez JF, Ferrero JM: Modeling the different sections of the cardiac conduction system to obtain realistic electrocardiograms. In 35th Annu Int Conf IEEE Eng Med Biol Soc (EMBC 2013). IEEE, Osaka, Japan; 2013:6846–9.Cardenes R, Sebastian R, Berruezo A, Camara O: Inverse
    • …
    corecore