158 research outputs found

    Onset detection to study muscle activity in reaching and grasping movements in rats

    Get PDF
    © 2019 IEEE. Personal use of this material is permitted. Permission from IEEE must be obtained for all other uses, in any current or future media, including reprinting/republishing this material for advertising or promotional purposes, creating new collective works, for resale or redistribution to servers or lists, or reuse of any copyrighted component of this work in other works.© 2019 IEEE. Personal use of this material is permitted. Permission from IEEE must be obtained for all other uses, in any current or future media, including reprinting/republishing this material for advertising or promotional purposes, creating new collective works, for resale or redistribution to servers or lists, or reuse of any copyrighted component of this work in other works.EMG signals reflect the neuromuscular activation patterns related to the execution of a certain movement or task. In this work, we focus on reaching and grasping (R&G) movements in rats. Our objective is to develop an automatic algorithm to detect the onsets and offsets of muscle activity and use it to study muscle latencies in R&G maneuvers. We had a dataset of intramuscular EMG signals containing 51 R&G attempts from 2 different animals. Simultaneous video recordings were used for segmentation and comparison. We developed an automatic onset/offset detector based on the ratio of local maxima of Teager-Kaiser Energy (TKE). Then, we applied it to compute muscle latencies and other features related to the muscle activation pattern during R&G cycles. The automatic onsets that we found were consistent with visual inspection and video labels. Despite the variability between attempts and animals, the two rats shared a sequential pattern of muscle activations. Statistical tests confirmed the differences between the latencies of the studied muscles during R&G tasks. This work provides an automatic tool to detect EMG onsets and offsets and conducts a preliminary characterization of muscle activation during R&G movements in rats. This kind of approaches and data processing algorithms can facilitate the studies on upper limb motor control and motor impairment after spinal cord injury or stroke.Postprint (published version

    Computational Intelligence in Electromyography Analysis

    Get PDF
    Electromyography (EMG) is a technique for evaluating and recording the electrical activity produced by skeletal muscles. EMG may be used clinically for the diagnosis of neuromuscular problems and for assessing biomechanical and motor control deficits and other functional disorders. Furthermore, it can be used as a control signal for interfacing with orthotic and/or prosthetic devices or other rehabilitation assists. This book presents an updated overview of signal processing applications and recent developments in EMG from a number of diverse aspects and various applications in clinical and experimental research. It will provide readers with a detailed introduction to EMG signal processing techniques and applications, while presenting several new results and explanation of existing algorithms. This book is organized into 18 chapters, covering the current theoretical and practical approaches of EMG research

    Complexity Analysis of Surface Electromyography for Assessing the Myoelectric Manifestation of Muscle Fatigue: A Review

    Get PDF
    The surface electromyography (sEMG) records the electrical activity of muscle fibers during contraction: one of its uses is to assess changes taking place within muscles in the course of a fatiguing contraction to provide insights into our understanding of muscle fatigue in training protocols and rehabilitation medicine. Until recently, these myoelectric manifestations of muscle fatigue (MMF) have been assessed essentially by linear sEMG analyses. However, sEMG shows a complex behavior, due to many concurrent factors. Therefore, in the last years, complexity-based methods have been tentatively applied to the sEMG signal to better individuate the MMF onset during sustained contractions. In this review, after describing concisely the traditional linear methods employed to assess MMF we present the complexity methods used for sEMG analysis based on an extensive literature search. We show that some of these indices, like those derived from recurrence plots, from entropy or fractal analysis, can detect MMF efficiently. However, we also show that more work remains to be done to compare the complexity indices in terms of reliability and sensibility; to optimize the choice of embedding dimension, time delay and threshold distance in reconstructing the phase space; and to elucidate the relationship between complexity estimators and the physiologic phenomena underlying the onset of MMF in exercising muscles

    Introduction to this Special Issue: Intelligent Data Analysis on Electromyography and Electroneurography

    Get PDF
    Computer-aided electromyography (EMG) and elec- troneurography (ENG) have become indispensable tools in the daily activities of neurophysiology laboratories in facilitating quantitative analysis and decision making in clinical neurophysiology, rehabilitation, sports medicine, and studies of human physiology. These tools form the basis of a new era in the practice of neurophysiology facilitating the: (i) Standardization . Diagnoses obtained with similar criteria in different laboratories can be veri- fied. (ii) Sensitivity . Neurophysiological findings in a particular subject under investigation may be compared with a database of normal values to determine whether abnormality exists or not. (iii) Specificity . Findings may be compared with databases derived from patients with known diseases, to evaluate whether they fit a specific diagnosis. (iv) Equivalence . Results from serial examin- ations on the same patient may be compared to decide whether there is evidence of disease progression or of response to treatment. Also, findings obtained from dif- ferent quantitative methods may be contrasted to deter- mine which are most sensitive and specific. Different methodologies have been developed in com- puter-aided EMG and ENG analysis ranging from simple quantitative measures of the recorded potentials, to more complex knowledge-based and neural network systems that enable the automated assessment of neuromuscular disorders. However, the need still exists for the further advancement and standardization of these method- ologies, especially nowadays with the emerging health telematics technologies which will enable their wider application in the neurophysiological laboratory. The main objective of this Special Issue of Medical Engin- eering & Physics is to provide a snapshot of current activities and methodologies in intelligent data analysis in peripheral neurophysiology. A total of 12 papers are published in this Special Issue under the following topics: Motor Unit Action Potential (MUAP) Analysis, Surface EMG (SEMG) Analysis, Electroneurography, and Decision Systems. In this intro- duction, the papers are briefly introduced, following a brief review of the major achievements in quantitative electromyography and electroneuropathy

    Asymmetry index in muscle activations

    Get PDF
    Gait asymmetry is typically evaluated using spatio-temporal or joint kinematics parameters. Only a few studies addressed the problem of defining an asymmetry index directly based on muscle activity, extracting parameters from surface electromyography (sEMG) signals. Moreover, no studies used the extraction of the muscle principal activations (activations that are necessary for accomplishing a specific motor task) as the base to construct an asymmetry index, less affected by the variability of sEMG patterns. The aim of this study is to define a robust index to quantitative assess the asymmetry of muscle activations during locomotion, based on the extraction of the principal activations. SEMG signals were analyzed combining Statistical Gait Analysis (SGA) and a clustering algorithm that allows for obtaining the muscle principal activations. We evaluated the asymmetry levels of four lower limb muscles in: (1) healthy subjects of different ages (children, adults, and elderly); (2) different populations of orthopedic patients (adults with megaprosthesis of the knee after bone tumor resection, elderly subjects after total knee arthroplasty and elderly subjects after total hip arthroplasty); and (3) neurological patients (children with hemiplegic cerebral palsy and elderly subjects affected by idiopathic Normal Pressure Hydrocephalus). The asymmetry index obtained for each pathological population was then compared to that of age-matched controls. We found asymmetry levels consistent with the expected impact of the different pathologies on muscle activation during gait. This suggests that the proposed index can be successfully used in clinics for an objective assessment of the muscle activation asymmetry during locomotion

    Complexity analysis of surface electromyography for assessing the myoelectric manifestation of muscle fatigue: A review

    Get PDF
    The surface electromyography (sEMG) records the electrical activity of muscle fibers during contraction: one of its uses is to assess changes taking place within muscles in the course of a fatiguing contraction to provide insights into our understanding of muscle fatigue in training protocols and rehabilitation medicine. Until recently, these myoelectric manifestations of muscle fatigue (MMF) have been assessed essentially by linear sEMG analyses. However, sEMG shows a complex behavior, due to many concurrent factors. Therefore, in the last years, complexity-based methods have been tentatively applied to the sEMG signal to better individuate the MMF onset during sustained contractions. In this review, after describing concisely the traditional linear methods employed to assess MMF we present the complexity methods used for sEMG analysis based on an extensive literature search. We show that some of these indices, like those derived from recurrence plots, from entropy or fractal analysis, can detect MMF efficiently. However, we also show that more work remains to be done to compare the complexity indices in terms of reliability and sensibility; to optimize the choice of embedding dimension, time delay and threshold distance in reconstructing the phase space; and to elucidate the relationship between complexity estimators and the physiologic phenomena underlying the onset of MMF in exercising muscles

    Development and optimization of a low-cost myoelectric upper limb prosthesis

    Get PDF
    Tese de Mestrado Integrado, Engenharia Biomédica e Biofísica (Engenharia Clínica e Instrumentação Médica), 2022, Universidade de Lisboa, Faculdade de CiênciasIn recent years, the increase in the number of accidents, chronic diseases, such as diabetes, and the impoverishment of certain developing countries have contributed to a significant increase in prostheses users. The loss of a particular limb entails numerous changes in the daily life of each user, which are amplified when the user loses their hand. Therefore, replacing the hand is an urgent necessity. Developing upper limb prostheses will allow the re-establishment of the physical and motor functions of the upper limb as well as reduction of the rates of depression. Therefore, the prosthetic industry has been reinventing itself and evolving. It is already possible to control a prosthesis through the user's myoelectric signals, control known as pattern recognition control. In addition, additive manufacturing technologies such as 3D printing have gained strength in prosthetics. The use of this type of technology allows the product to reach the user much faster and reduces the weight of the devices, making them lighter. Despite these advances, the rejection rate of this type of device is still high since most prostheses available on the market are slow, expensive and heavy. Because of that, academia and institutions have been investigating ways to overcome these limitations. Nevertheless, the dependence on the number of acquisition channels is still limiting since most users do not have a large available forearm surface area to acquire the user’s myoelectric signals. This work intends to solve some of these problems and answer the questions imposed by the industry and researchers. The main objective is to test if developing a subject independent, fast and simple microcontroller is possible. Subsequently, we recorded data from forty volunteers through the BIOPAC acquisition system. After that, the signals were filtered through two different processes. The first was digital filtering and the application of wavelet threshold noise reduction. Later, the signal was divided into smaller windows (100 and 250 milliseconds) and thirteen features were extracted in the temporal domain. During all these steps, the MatLab® software was used. After extraction, three feature selection methods were used to optimize the classification process, where machine learning algorithms are implemented. The classification was divided into different parts. First, the classifier had to distinguish whether the volunteer was making some movement or was at rest. In the case of detected movement, the classifier would have to, on a second level, try to understand if they were moving only one finger or performing a movement that involved the flexion of more than one finger (grip). If the volunteer was performing a grip on the third level, the classifier would have to identify whether the volunteer was performing a spherical or triad grip. Finally, to understand the influence of the database on the classification, two methods were used: cross-validation and split validation. After analysing the results, the e-NABLE Unlimbited arm was printed on The Original Prusa i3 MK3, where polylactic acid (PLA) was used. This dissertation showed that the results obtained in the 250-millisecond window were better than the obtained ones in a 100-millisecond window. In general, the best classifier was the K-Nearest Neighbours (KNN) with k=2, except for the first level that was LDA. The best results were obtained for the first classification level, with an accuracy greater than 90%. Although the results obtained for the second and third levels were close to 80%, it was concluded that it was impossible to develop a microcontroller dependent only on one acquisition channel. These results agree with the anatomical characteristics since they are originated from the same muscle group. The cross-validation results were lower than those obtained in the training-test methodology, which allowed us to conclude that the inter variability that exists between the subjects significantly affects the classification performance. Furthermore, both the dominant and non-dominant arms were used in this work, which also increased the discrepancy between signals. Indeed, the results showed that it is impossible to develop a microcontroller adaptable to all users. Therefore, in the future, the best path will be to opt for the customization of the prototype. In order to test the implementation of a microcontroller in the printed model, it was necessary to design a support structure in Solidworks that would support the motors used to flex the fingers and Arduino to control the motors. Consequently, the e-NABLE model was re adapted, making it possible to develop a clinical training prototype. Even though it is a training prototype, it is lighter than those on the market and cheaper. The objectives of this work have been fulfilled and many answers have been given. However, there is always space for improvement. Although, this dissertation has some limitations, it certainly contributed to clarify many of the doubts that still exist in the scientific community. Hopefully, it will help to further develop the prosthetic industry.Nos últimos anos, o aumento do número de acidentes por doenças crónicas, como, por exemplo, a diabetes, e o empobrecimento de determinados países em desenvolvimento têm contribuído para um aumento significativo no número de utilizadores de próteses. A perda de um determinado membro acarreta inúmeras mudanças no dia-a-dia de cada utilizador. Estas são amplificadas quando a perda é referente à mão ou parte do antebraço. A mão é uma ferramenta essencial no dia-a-dia de cada ser humano, uma vez que é através dela que são realizadas as atividades básicas, como, por exemplo, tomar banho, lavar os dentes, comer, preparar refeições, etc. A substituição desta ferramenta é, portanto, uma necessidade, não só porque permitirá restabelecer as funções físicas e motoras do membro superior, como, também, reduzirá o nível de dependência destes utilizadores de outrem e, consequentemente, das taxas de depressão. Para colmatar as necessidades dos utilizadores, a indústria prostética tem-se reinventado e evoluído, desenvolvendo próteses para o membro superior cada vez mais sofisticadas. Com efeito, já é possível controlar uma prótese através da leitura e análise dos sinais mioelétricos do próprio utilizador, o que é denominado por muitos investigadores de controlo por reconhecimento de padrões. Este tipo de controlo é personalizável e permite adaptar a prótese a cada utilizador. Para além do uso de sinais elétricos provenientes do musculo do utilizador, a impressão 3D, uma técnica de manufatura aditiva, têm ganho força no campo da prostética. Por conseguinte, nos últimos anos os investigadores têm impresso inúmeros modelos com diferentes materiais que vão desde o uso de termoplásticos, ao uso de materiais flexíveis. A utilização deste tipo de tecnologia permite, para além de uma rápida entrega do produto ao utilizador, uma diminuição no tempo de construção de uma prótese tornando-a mais leve e barata. Além do mais, a impressão 3D permite criar protótipos mais sustentáveis, uma vez que existe uma redução na quantidade de material desperdiçado. Embora já existam inúmeras soluções, a taxa de rejeição deste tipo de dispositivos é ainda bastante elevada, uma vez que a maioria das próteses disponíveis no mercado, nomeadamente as mioelétricas, são lentas, caras e pesadas. Ainda que existam alguns estudos que se debrucem neste tipo de tecnologias, bem como na sua evolução científica, o número de elétrodos utilizados é ainda significativo. Desta forma, e, tendo em conta que a maioria dos utilizadores não possuí uma área de superfície do antebraço suficiente para ser feita a aquisição dos sinais mioelétricos, o trabalho feito pela academia não se revelou tão contributivo para a indústria prostética como este prometia inicialmente. Este trabalho pretende resolver alguns desses problemas e responder às questões mais impostas pela indústria e investigadores, para que, no futuro, o número de utilizadores possa aumentar, assim como o seu índice de satisfação relativamente ao produto. Para tal, recolheram-se os sinais mioelétricos de quarenta voluntários, através do sistema de aquisição BIOPAC. Após a recolha, filtraram-se os sinais de seis voluntários através de dois processos diferentes. No primeiro, utilizaram-se filtros digitais e no segundo aplicou-se a transformada de onda para a redução do ruído. De seguida, o sinal foi segmentado em janelas mais pequenas de 100 e 250 milissegundos e extraíram-se treze features no domínio temporal. Para que o processo de classificação fosse otimizado, foram aplicados três métodos de seleção de features. A classificação foi dividida em três níveis diferentes nos quais dois algoritmos de aprendizagem automática foram implementados, individualmente. No primeiro nível, o objetivo foi a distinção entre os momentos em que o voluntário fazia movimento ou que estava em repouso. Caso o output do classificador fosse a classe movimento, este teria de, num segundo nível, tentar perceber se o voluntário estaria a mexer apenas um dedo ou a realizar um movimento que envolvesse a flexão de mais de que um dedo (preensão). No caso de uma preensão, passava-se ao terceiro nível onde o classificador teria de identificar se o voluntário estaria a realizar a preensão esférica ou em tríade. Para todos os níveis de classificação, obtiveram-se resultados para o método de validação cruzada e o método de teste e treino, sendo que neste, 70% dos dados foram utilizados como conjunto de treino e 30% como teste. Efetuada a análise dos resultados, escolheu-se um dos modelos da comunidade e-NABLE. O modelo foi impresso na impressora The Original Prusa i3 MK3S e o material escolhido foi o ácido poliláctico (PLA). Para que fosse possível testar a implementação de um microcontrolador num modelo que originalmente depende da flexão do cotovelo realizada pelo utilizador, foi necessário desenhar uma estrutura de suporte que suportasse, não só os motores utilizados para flexionar os dedos, como, também, o Arduíno. O suporte desenhado foi impresso com o mesmo material e com a mesma impressora. Os resultados obtidos mostraram que a janela de 250 milissegundo foi a melhor e que, regra geral, o melhor classificador é o K-Nearest Neighbors (KNN) com k=2, com exceção do primeiro nível, em que o melhor classificador foi o Linear Discriminant Analysis (LDA). Os melhores resultados obtiveram-se no primeiro nível de classificação onde a accuracy foi superior a 90%. Embora os resultados obtidos para o segundo e terceiro nível tenham sido próximos de 80%, concluiu-se que não era possível desenvolver um microcontrolador dependente apenas de um canal de aquisição. Tal era expectável, uma vez que os movimentos estudados são originados pelo mesmo grupo muscular e a intervariabilidade dos sujeitos um fator significativo. Os resultados da validação cruzada foram menos precisos do que os obtidos para a metodologia de treino-teste, o que permitiu concluir que a intervariabilidade existente entre os voluntários afeta significativamente o processo de classificação. Para além disso, os voluntários utilizaram o braço dominante e o braço não dominante, o que acabou por aumentar a discrepância entre os sinais recolhidos. Com efeito, os resultados mostraram que não é possível desenvolver um microcontrolador que seja adaptável a todos os utilizadores e, portanto, no futuro, o melhor caminho será optar pela personalização do protótipo. Tendo o conhecimento prévio desta evidência, o protótipo desenvolvido neste trabalho apenas servirá como protótipo de treino para o utilizador. Ainda assim, este é bem mais leve que os existentes no mercado e muito mais barato. Nele é ainda possível testar e controlar alguns dos componentes que no futuro irão fazer parte da prótese completa, prevenindo acidentes. Não obstante o cumprimento dos objetivos deste trabalho e das muitas respostas que por ele foram dadas, existe sempre espaço para melhorias. Dado à limitação de tempo, não foi possível testar o microcontrolador em tempo-real nem efetuar testes mecânicos de flexibilidade e resistência dos materiais da prótese. Deste modo, seria interessante no futuro fazer testes de performance em tempo real e submeter a prótese a condições extremas, para que a tensão elástica e a tensão dos pins sejam testadas. Para além disso, testar os mecanismos de segurança da prótese quando o utilizador tem de fazer muita força é fundamental. O teste destes parâmetros evitará a ocorrência de falhas que poderão magoar o utilizador, bem como estragar os objetos com os quais a prótese poderá interagir. Por fim, é necessário melhorar o aspeto cosmético das próteses. Para que isso aconteça, poderão ser utilizados polímeros com uma coloração próxima do tom da pele do utilizador. Uma outra forma de melhorar este aspeto, seria fazer o scanning do braço saudável do utilizador e usar materiais flexíveis para as articulações e dedos que, juntamente com uma palma de termoplásticos resistentes e um microcontrolador, permitissem um movimento bastante natural próximo do biológico. Em suma, apesar de algumas limitações, este trabalho contribuiu para o esclarecimento de muitas das dúvidas que ainda existiam na comunidade científica e ajudará a desenvolver a indústria prostética

    Non-Invasive Investigation of Human Foot Muscles Function

    Get PDF
    Appropriate functioning of the human foot is fundamental for good quality of life. The intrinsic foot muscles (IFM) are a crucial component of the foot, but their natural behaviour and contribution to good foot health is currently poorly understood. Recording muscle activation from IFM has been attempted with invasive techniques, but these generally only allow assessment of one muscle at a time and are not much used in many clinical populations (e.g. children, patients with peripheral neuropathy or on blood thinning medication). Here a novel application of multi-channel surface electromyography (sEMG) electrodes is presented to non-invasively, record sEMG and quantify activation patterns of IFMs from across the plantar region of the foot. sEMG (13×5 array), kinematics and force plate data were recorded from 30 healthy adult volunteers who completed six postural balance tasks (e.g. bipedal stance, one-foot stance, two-foot tip-toe). Linear (amplitude based) and non-linear (entropy based) methodologies were used to evaluate the physiological features of the sEMG, the patterns of activation, the association with whole body and foot biomechanics and the neuromuscular drive to the IFM. EMG signals features (amplitude and frequency) were shown to be in the physiological ranges reported in the literature (Basmajian and De Luca, 1985), with spatially clustered patterns of high activation corresponding to the Flexor digitorum brevis muscle. IFMs responded differently based on the direction of postural sway, with greater activations associated with sways in the mediolateral direction. Entropy based, non-linear analysis revealed that neuromuscular drive to IFM depends on the balance demand of the postural task, with greater drive evident for more challenging tasks (i.e. standing on tiptoe). Combining non-invasive measures of IFM activation and entropy based assessment of temporal organisation (or structure) of EMG signal variability is therefore revealing of IFM function and will enable a more detailed assessment of IFM function across healthy and clinical populations

    Identification of periodic bursts in surface EMG: Applications to the erector spinae muscles of sitting violin players

    Get PDF
    Objective: This work compares two known and one novel techniques for the detection of surface EMG (sEMG) quasi-periodic burst-like signals and the estimation of their frequency. The novel method (ES) is based on the spectral analysis of the envelope signal, the other two methods use a fixed (FT) or automatically selected optimal threshold (OT). Methods: The methods are compared using both simulated signals and samples of High Density sEMG experimental signals collected using electrode arrays applied to the erector spinae muscles of violinists. Results: The ES method does not require thresholds. It detects presence/absence of bursts and their frequency, even in cases of a few missing bursts. It does not provide their duration. The FT method requires the selection of a fixed threshold value, estimates burst duration but is applicable only if bursts are present. The OT method identifies an optimal threshold, estimates burst duration but behaves irregularly when bursts are small or absent. Conclusions: The ES method provides the estimates closest to those of an expert human counter and is not sensitive to amplitude fluctuations. It is suitable when the general bursts periodicity is of interest even if some bursts may be missing. The FT and OT methods are sensitive to amplitude fluctuations and identify random threshold crossings as bursts even when burst activity is absent. Significance: Postural muscles are often activated in a burst-like fashion. The proposed ES method identifies presence/absence of bursts and their frequency, which is important for studying the neurophysiological mechanism generating them
    • …
    corecore