21 research outputs found

    A Data-Driven Edge-Preserving D-bar Method for Electrical Impedance Tomography

    Full text link
    In Electrical Impedance Tomography (EIT), the internal conductivity of a body is recovered via current and voltage measurements taken at its surface. The reconstruction task is a highly ill-posed nonlinear inverse problem, which is very sensitive to noise, and requires the use of regularized solution methods, of which D-bar is the only proven method. The resulting EIT images have low spatial resolution due to smoothing caused by low-pass filtered regularization. In many applications, such as medical imaging, it is known \emph{a priori} that the target contains sharp features such as organ boundaries, as well as approximate ranges for realistic conductivity values. In this paper, we use this information in a new edge-preserving EIT algorithm, based on the original D-bar method coupled with a deblurring flow stopped at a minimal data discrepancy. The method makes heavy use of a novel data fidelity term based on the so-called {\em CGO sinogram}. This nonlinear data step provides superior robustness over traditional EIT data formats such as current-to-voltage matrices or Dirichlet-to-Neumann operators, for commonly used current patterns.Comment: 24 pages, 11 figure

    Autopilot spatially-adaptive active contour parameterization for medical image segmentation

    Get PDF
    In this work, a novel framework for automated, spatially-adaptive adjustment of active contour regularization and data fidelity parameters is proposed and applied for medical image segmentation. The proposed framework is tailored upon the isomorphism observed between these parameters and the eigenvalues of diffusion tensors. Since such eigenvalues reflect the diffusivity of edge regions, we embed this information in regularization and data fidelity parameters by means of entropy-based, spatially-adaptive `heatmaps'. The latter are able to repel an active contour from randomly directed edge regions and guide it towards structured ones. Experiments are conducted on endoscopic as well as mammographic images. The segmentation results demonstrate that the proposed framework bypasses iterations dedicated to false local minima associated with noise, artifacts and inhomogeneities, speeding up contour convergence, whereas it maintains a high segmentation quality

    Variational methods and its applications to computer vision

    Get PDF
    Many computer vision applications such as image segmentation can be formulated in a ''variational'' way as energy minimization problems. Unfortunately, the computational task of minimizing these energies is usually difficult as it generally involves non convex functions in a space with thousands of dimensions and often the associated combinatorial problems are NP-hard to solve. Furthermore, they are ill-posed inverse problems and therefore are extremely sensitive to perturbations (e.g. noise). For this reason in order to compute a physically reliable approximation from given noisy data, it is necessary to incorporate into the mathematical model appropriate regularizations that require complex computations. The main aim of this work is to describe variational segmentation methods that are particularly effective for curvilinear structures. Due to their complex geometry, classical regularization techniques cannot be adopted because they lead to the loss of most of low contrasted details. In contrast, the proposed method not only better preserves curvilinear structures, but also reconnects some parts that may have been disconnected by noise. Moreover, it can be easily extensible to graphs and successfully applied to different types of data such as medical imagery (i.e. vessels, hearth coronaries etc), material samples (i.e. concrete) and satellite signals (i.e. streets, rivers etc.). In particular, we will show results and performances about an implementation targeting new generation of High Performance Computing (HPC) architectures where different types of coprocessors cooperate. The involved dataset consists of approximately 200 images of cracks, captured in three different tunnels by a robotic machine designed for the European ROBO-SPECT project.Open Acces

    Self-parameterized active contours based on regional edge structure for medical image segmentation

    Full text link

    Identification and quantification of colours in children's drawings

    Get PDF
    Researchers in social sciences and humanities disciplines are confronted with the need to analyse increasing amounts of visual data, which calls for the development of new computational methods. This paper focuses on the problem of identifying the colours used in children's drawings, notably in the perspective of assessing their diversity. It describes a simple, effective, and flexible algorithm for performing this task. This methodology is applied to a subset of more than 1000 drawings taken from the ``Drawings of gods'' database. The first results show that this approach makes it possible to address meaningful research questions concerning the patterns of colour usage in these data

    Deep Semantic Segmentation of Natural and Medical Images: A Review

    Full text link
    The semantic image segmentation task consists of classifying each pixel of an image into an instance, where each instance corresponds to a class. This task is a part of the concept of scene understanding or better explaining the global context of an image. In the medical image analysis domain, image segmentation can be used for image-guided interventions, radiotherapy, or improved radiological diagnostics. In this review, we categorize the leading deep learning-based medical and non-medical image segmentation solutions into six main groups of deep architectural, data synthesis-based, loss function-based, sequenced models, weakly supervised, and multi-task methods and provide a comprehensive review of the contributions in each of these groups. Further, for each group, we analyze each variant of these groups and discuss the limitations of the current approaches and present potential future research directions for semantic image segmentation.Comment: 45 pages, 16 figures. Accepted for publication in Springer Artificial Intelligence Revie

    Interactive Segmentation of 3D Medical Images with Implicit Surfaces

    Get PDF
    To cope with a variety of clinical applications, research in medical image processing has led to a large spectrum of segmentation techniques that extract anatomical structures from volumetric data acquired with 3D imaging modalities. Despite continuing advances in mathematical models for automatic segmentation, many medical practitioners still rely on 2D manual delineation, due to the lack of intuitive semi-automatic tools in 3D. In this thesis, we propose a methodology and associated numerical schemes enabling the development of 3D image segmentation tools that are reliable, fast and interactive. These properties are key factors for clinical acceptance. Our approach derives from the framework of variational methods: segmentation is obtained by solving an optimization problem that translates the expected properties of target objects in mathematical terms. Such variational methods involve three essential components that constitute our main research axes: an objective criterion, a shape representation and an optional set of constraints. As objective criterion, we propose a unified formulation that extends existing homogeneity measures in order to model the spatial variations of statistical properties that are frequently encountered in medical images, without compromising efficiency. Within this formulation, we explore several shape representations based on implicit surfaces with the objective to cover a broad range of typical anatomical structures. Firstly, to model tubular shapes in vascular imaging, we introduce convolution surfaces in the variational context of image segmentation. Secondly, compact shapes such as lesions are described with a new representation that generalizes Radial Basis Functions with non-Euclidean distances, which enables the design of basis functions that naturally align with salient image features. Finally, we estimate geometric non-rigid deformations of prior templates to recover structures that have a predictable shape such as whole organs. Interactivity is ensured by restricting admissible solutions with additional constraints. Translating user input into constraints on the sign of the implicit representation at prescribed points in the image leads us to consider inequality-constrained optimization

    Méthodes multi-organes rapides avec a priori de forme pour la localisation et la segmentation en imagerie médicale 3D

    Get PDF
    With the ubiquity of imaging in medical applications (diagnostic, treatment follow-up, surgery planning. . . ), image processing algorithms have become of primary importance. Algorithms help clinicians extract critical information more quickly and more reliably from increasingly large and complex acquisitions. In this context, anatomy localization and segmentation is a crucial component in modern clinical workflows. Due to particularly high requirements in terms of robustness, accuracy and speed, designing such tools remains a challengingtask.In this work, we propose a complete pipeline for the segmentation of multiple organs in medical images. The method is generic, it can be applied to varying numbers of organs, on different imaging modalities. Our approach consists of three components: (i) an automatic localization algorithm, (ii) an automatic segmentation algorithm, (iii) a framework for interactive corrections. We present these components as a coherent processing chain, although each block could easily be used independently of the others. To fulfill clinical requirements, we focus on robust and efficient solutions. Our anatomy localization method is based on a cascade of Random Regression Forests (Cuingnet et al., 2012). One key originality of our work is the use of shape priors for each organ (thanks to probabilistic atlases). Combined with the evaluation of the trained regression forests, they result in shape-consistent confidence maps for each organ instead of simple bounding boxes. Our segmentation method extends the implicit template deformation framework of Mory et al. (2012) to multiple organs. The proposed formulation builds on the versatility of the original approach and introduces new non-overlapping constraintsand contrast-invariant forces. This makes our approach a fully automatic, robust and efficient method for the coherent segmentation of multiple structures. In the case of imperfect segmentation results, it is crucial to enable clinicians to correct them easily. We show that our automatic segmentation framework can be extended with simple user-driven constraints to allow for intuitive interactive corrections. We believe that this final component is key towards the applicability of our pipeline in actual clinical routine.Each of our algorithmic components has been evaluated on large clinical databases. We illustrate their use on CT, MRI and US data and present a user study gathering the feedback of medical imaging experts. The results demonstrate the interest in our method and its potential for clinical use.Avec l’utilisation de plus en plus rĂ©pandue de l’imagerie dans la pratique mĂ©dicale (diagnostic, suivi, planification d’intervention, etc.), le dĂ©veloppement d’algorithmes d’analyse d’images est devenu primordial. Ces algorithmes permettent aux cliniciens d’analyser et d’interprĂ©ter plus facilement et plus rapidement des donnĂ©es de plus en plus complexes. Dans ce contexte, la localisation et la segmentation de structures anatomiques sont devenues des composants critiques dans les processus cliniques modernes. La conception de tels outils pour rĂ©pondre aux exigences de robustesse, prĂ©cision et rapiditĂ© demeure cependant un rĂ©el dĂ©fi technique.Ce travail propose une mĂ©thode complĂšte pour la segmentation de plusieurs organes dans des images mĂ©dicales. Cette mĂ©thode, gĂ©nĂ©rique et pouvant ĂȘtre appliquĂ©e Ă  un nombre variĂ© de structures et dans diffĂ©rentes modalitĂ©s d’imagerie, est constituĂ©e de trois composants : (i) un algorithme de localisation automatique, (ii) un algorithme de segmentation, (iii) un outil de correction interactive. Ces diffĂ©rentes parties peuvent s’enchaĂźner aisĂ©ment pour former un outil complet et cohĂ©rent, mais peuvent aussi bien ĂȘtre utilisĂ©es indĂ©pendemment. L’accent a Ă©tĂ© mis sur des mĂ©thodes robustes et efficaces afin de rĂ©pondre aux exigences cliniques. Notre mĂ©thode de localisation s’appuie sur une cascade de rĂ©gression par forĂȘts alĂ©atoires (Cuingnet et al., 2012). Elle introduit l’utilisation d’informations a priori de forme, spĂ©cifiques Ă  chaque organe (grĂące Ă  des atlas probabilistes) pour des rĂ©sultats plus cohĂ©rents avec la rĂ©alitĂ© anatomique. Notre mĂ©thode de segmentation Ă©tend la mĂ©thode de segmentation par modĂšle implicite (Mory et al., 2012) Ă  plusieurs modĂšles. La formulation proposĂ©e permet d’obtenir des dĂ©formations cohĂ©rentes, notamment en introduisant des contraintes de non recouvrement entre les modĂšles dĂ©formĂ©s. En s’appuyant sur des forces images polyvalentes, l’approche proposĂ©e se montre robuste et performante pour la segmentation de multiples structures. Toute mĂ©thode automatique n’est cependant jamais parfaite. Afin que le clinicien garde la main sur le rĂ©sultat final, nous proposons d’enrichir la formulation prĂ©cĂ©dente avec des contraintes fournies par l’utilisateur. Une optimisation localisĂ©e permet d’obtenir un outil facile Ă  utiliser et au comportement intuitif. Ce dernier composant est crucial pour que notre outil soit rĂ©ellement utilisable en pratique. Chacun de ces trois composants a Ă©tĂ© Ă©valuĂ© sur plusieurs grandes bases de donnĂ©es cliniques (en tomodensitomĂ©trie, imagerie par rĂ©sonance magnĂ©tique et ultrasons). Une Ă©tude avec des utilisateurs nous a aussi permis de recueillir des retours positifs de plusieurs experts en imagerie mĂ©dicale. Les diffĂ©rents rĂ©sultats prĂ©sentĂ©s dans ce manuscrit montrent l’intĂ©rĂȘt de notre mĂ©thode et son potentiel pour une utilisation clinique
    corecore