149 research outputs found

    Mumford dendrograms and discrete p-adic symmetries

    Full text link
    In this article, we present an effective encoding of dendrograms by embedding them into the Bruhat-Tits trees associated to pp-adic number fields. As an application, we show how strings over a finite alphabet can be encoded in cyclotomic extensions of Qp\mathbb{Q}_p and discuss pp-adic DNA encoding. The application leads to fast pp-adic agglomerative hierarchic algorithms similar to the ones recently used e.g. by A. Khrennikov and others. From the viewpoint of pp-adic geometry, to encode a dendrogram XX in a pp-adic field KK means to fix a set SS of KK-rational punctures on the pp-adic projective line P1\mathbb{P}^1. To P1∖S\mathbb{P}^1\setminus S is associated in a natural way a subtree inside the Bruhat-Tits tree which recovers XX, a method first used by F. Kato in 1999 in the classification of discrete subgroups of PGL2(K)\textrm{PGL}_2(K). Next, we show how the pp-adic moduli space M0,n\mathfrak{M}_{0,n} of P1\mathbb{P}^1 with nn punctures can be applied to the study of time series of dendrograms and those symmetries arising from hyperbolic actions on P1\mathbb{P}^1. In this way, we can associate to certain classes of dynamical systems a Mumford curve, i.e. a pp-adic algebraic curve with totally degenerate reduction modulo pp. Finally, we indicate some of our results in the study of general discrete actions on P1\mathbb{P}^1, and their relation to pp-adic Hurwitz spaces.Comment: 14 pages, 6 figure

    Degenerating families of dendrograms

    Full text link
    Dendrograms used in data analysis are ultrametric spaces, hence objects of nonarchimedean geometry. It is known that there exist pp-adic representation of dendrograms. Completed by a point at infinity, they can be viewed as subtrees of the Bruhat-Tits tree associated to the pp-adic projective line. The implications are that certain moduli spaces known in algebraic geometry are pp-adic parameter spaces of (families of) dendrograms, and stochastic classification can also be handled within this framework. At the end, we calculate the topology of the hidden part of a dendrogram.Comment: 13 pages, 8 figure

    Fast redshift clustering with the Baire (ultra) metric

    Full text link
    The Baire metric induces an ultrametric on a dataset and is of linear computational complexity, contrasted with the standard quadratic time agglomerative hierarchical clustering algorithm. We apply the Baire distance to spectrometric and photometric redshifts from the Sloan Digital Sky Survey using, in this work, about half a million astronomical objects. We want to know how well the (more cos\ tly to determine) spectrometric redshifts can predict the (more easily obtained) photometric redshifts, i.e. we seek to regress the spectrometric on the photometric redshifts, and we develop a clusterwise nearest neighbor regression procedure for this.Comment: 14 pages, 6 figure

    Consensus clustering approach to group brain connectivity matrices

    Get PDF
    A novel approach rooted on the notion of consensus clustering, a strategy developed for community detection in complex networks, is proposed to cope with the heterogeneity that characterizes connectivity matrices in health and disease. The method can be summarized as follows: (i) define, for each node, a distance matrix for the set of subjects by comparing the connectivity pattern of that node in all pairs of subjects; (ii) cluster the distance matrix for each node; (iii) build the consensus network from the corresponding partitions; (iv) extract groups of subjects by finding the communities of the consensus network thus obtained. Differently from the previous implementations of consensus clustering, we thus propose to use the consensus strategy to combine the information arising from the connectivity patterns of each node. The proposed approach may be seen either as an exploratory technique or as an unsupervised pre-training step to help the subsequent construction of a supervised classifier. Applications on a toy model and two real data sets, show the effectiveness of the proposed methodology, which represents heterogeneity of a set of subjects in terms of a weighted network, the consensus matrix

    A pp-adic RanSaC algorithm for stereo vision using Hensel lifting

    Full text link
    A pp-adic variation of the Ran(dom) Sa(mple) C(onsensus) method for solving the relative pose problem in stereo vision is developped. From two 2-adically encoded images a random sample of five pairs of corresponding points is taken, and the equations for the essential matrix are solved by lifting solutions modulo 2 to the 2-adic integers. A recently devised pp-adic hierarchical classification algorithm imitating the known LBG quantisation method classifies the solutions for all the samples after having determined the number of clusters using the known intra-inter validity of clusterings. In the successful case, a cluster ranking will determine the cluster containing a 2-adic approximation to the "true" solution of the problem.Comment: 15 pages; typos removed, abstract changed, computation error remove

    ICA model order selection of task co-activation networks

    Get PDF
    Independent component analysis (ICA) has become a widely used method for extracting functional networks in the brain during rest and task. Historically, preferred ICA dimensionality has widely varied within the neuroimaging community, but typically varies between 20 and 100 components. This can be problematic when comparing results across multiple studies because of the impact ICA dimensionality has on the topology of its resultant components. Recent studies have demonstrated that ICA can be applied to peak activation coordinates archived in a large neuroimaging database (i.e., BrainMap Database) to yield whole-brain task-based co-activation networks. A strength of applying ICA to BrainMap data is that the vast amount of metadata in BrainMap can be used to quantitatively assess tasks and cognitive processes contributing to each component. In this study, we investigated the effect of model order on the distribution of functional properties across networks as a method for identifying the most informative decompositions of BrainMap-based ICA components. Our findings suggest dimensionality of 20 for low model order ICA to examine large-scale brain networks, and dimensionality of 70 to provide insight into how large-scale networks fractionate into sub-networks. We also provide a functional and organizational assessment of visual, motor, emotion, and interoceptive task co-activation networks as they fractionate from low to high model-orders
    • …
    corecore