33 research outputs found

    Multiyear load growth based techno-financial evaluation of a microgrid for an academic institution

    Get PDF
    An escalating energy demand can be seen especially in developing and fast-growing economies such as India. Conventional energy resources meet most of the energy demand. The alarming issue of global warming and the dependency on fossil fuels to meet the energy demand has motivated the use of clean energy sources. In this context, the educational institutions with high electricity consumption in India have been planning to opt for locally available renewable energy sources to meet their electricity demand. Even one of the most crucial issues in such academic institutions is the food waste management. Most of the institutes, give up their food wastage to piggeries which are directly fed to animals or discarded or dumped irrationally. In this paper, an optimal microgrid solution using locally available energy resources for a real physical location considering its real time-power demand is proposed. Various scenarios and different combinations of energy sources, such as solar photovoltaic, food waste based biogas plant, and a diesel generator as backup have been considered along with batteries as storage in off-grid and grid-connected systems. Hybrid optimization of multiple electric renewables (HOMER) PRO software package is utilized for detailed technical and nancial analysis with a multiyear growth approach to determine the optimal energy system, which is unlikely observed in literature so far. The detailed analysis results illustrate that photovoltaic contributes most of the electricity being generated in all the scenarios. The renewable fraction is comparatively high in the off-grid system in the range of 92% to 100% as compared with 63% to 80% in grid-connected systems. The results obtained also show that levelized cost of electricity is low in case of grid-connected systems varying between 0.18 Indian National Rupee (INR)/kWh to 1.39 INR/kWh in contrast to 11.96 INR/kWh to 18.47 INR/kWh for off-grid systems.http://ieeexplore.ieee.org/xpl/RecentIssue.jsp?punumber=6287639am2018Electrical, Electronic and Computer Engineerin

    Optimal energy management of a campus microgrid considering financial and economic analysis with demand response strategies

    Get PDF
    An energy management system (EMS) was proposed for a campus microgrid (µG) with the incorporation of renewable energy resources to reduce the operational expenses and costs. Many uncertainties have created problems for microgrids that limit the generation of photovoltaics, causing an upsurge in the energy market prices, where regulating the voltage or frequency is a challenging task among several microgrid systems, and in the present era, it is an extremely important research area. This type of difficulty may be mitigated in the distribution system by utilizing the optimal demand response (DR) planning strategy and a distributed generator (DG). The goal of this article was to present a strategy proposal for the EMS structure for a campus microgrid to reduce the operational costs while increasing the self-consumption from green DGs. For this reason, a real-time-based institutional campus was investigated here, which aimed to get all of its power from the utility grid. In the proposed scenario, solar panels and wind turbines were considered as non-dispatchable DGs, whereas a diesel generator was considered as a dispatchable DG, with the inclusion of an energy storage system (ESS) to deal with solar radiation disruptions and high utility grid running expenses. The resulting linear mathematical problem was validated and plotted in MATLAB with mixed-integer linear programming (MILP). The simulation findings demonstrated that the proposed model of the EMS reduced the grid electricity costs by 38% for the campus microgrid. The environmental effects, economic effects, and the financial comparison of installed capacity of the PV system were also investigated here, and it was discovered that installing 1000 kW and 2000 kW rooftop solar reduced the GHG generation by up to 365.34 kg CO2/day and 700.68 kg CO2/day, respectively. The significant economic and environmental advantages based on the current scenario encourage campus owners to invest in DGs and to implement the installation of energy storage systems with advanced concepts

    Optimal planning of hybrid energy conversion systems for annual energy cost minimization in Indian residential buildings

    Get PDF
    The increasing interest in renewables has encouraged power system planners to include the concept of hybrid energy systems in modern power industry. Besides, the modern power consumers are becoming more concerned about their energy bills which has led to the concept of hybrid energy management systems (HEMSs) for buildings to monitor, control and optimally manage energy consumptions without any waste. In this study, an optimal planning framework is proposed to determine optimal capacities and sharing of hybrid energy conversion systems (HECS) such as wind turbine, solar photovoltaic, battery energy storage and the utility grid. The objective is to maximize the net present value of the project/system which includes the cost of annual investment, operation and maintenance costs of HEMS expected to have incurred in the planning period. All the costs and parameters are considered in the Indian context, and Genetic Algorithm (GA) is adopted to solve this proposed planning framework. The simulation results obtained are compared with same obtained for conventional houses in India. The comparison shows that the proposed framework effectively reduces the electricity bills while improving its reliability

    Microgrid system

    Get PDF
    Due to the growing awareness of the harmful impact of conventional fossil fuels and advancements in renewable energy technologies, microgrid has grown in popularity. This chapter aims to provide holistic learning of the microgrid system. This chapter is not only helpful for readers who are new to the world microgrid energy systems but also provide essential information to experts of this field. The chapter highlights the need and merits of adoption of microgrid systems while also highlighting the barriers in its implementation. The chapter also provides the various methods of categorization of microgrid while also emphasizing critical points of multiple categories. The different aspect of the deployment of microgrids, such as its architecture, mode of operations, control strategies, monitoring methods, protection schemes, and energy management strategies are categorically explained. The fundamental requirement of the protection system and its functions are described to provide the overview of protection schemes used in the microgrid in this chapter. Various protection schemes will be discussed in the other following chapter giving more emphasis on new protection strategies.https://www.springer.com/series/7818hj2021Electrical, Electronic and Computer Engineerin

    Off-grid Solar Power Design and Battery Storage Optimisation

    Get PDF
    Battery storage for solar applications have reduced in price over the years as more manufacturers begin to enter the market and manufacture batteries for residential use. This is undoubtedly a result of increased costs related to staying on grid as well as demand for solar panels have brought a decrease to their cost with an increase to the quality of the panels. This project sets out to analyse five locations across Queensland across three different load sizes, whilst comparing existing components, with the new battery technology from Enphase Energy, for either grid connected or off grid systems, which is dependent on the size of the system, location and components used. In this paper, detailed research was conducted for existing technology, as well as past projects involving renewable energy, focusing on off-grid solar power design and battery storage optimisation. Across the extensive literature reviewed, which was utilised for their relevance as well as being peer reviewed and cross referenced, the idea to model systems using HOMER Pro® and NREL SAM® was constructed in order to analyse techniques involved for each system to meet the load profiles. This was done to not only undergo an extensive analysis that focused on LCOE, ROI, system output, initial capital and NPC but also compare and contrast between the two programs to fully optimise the system using shade analysis and manual battery dispatch strategies. The result of this analysis and additional optimisation, resulted in the following optimised systems for each location. Brisbane had a 13.0 kW system with a single Tesla Powerwall 2 AC battery (13.5 kWh), Toowoomba had a 6.6 kW system with two Trojan SIND 041245 batteries (17.8 kWh), Hervey Bay had a 13.0 kW system with a single Tesla Powerwall 2 AC battery (13.5 kWh), Barcaldine had a 6.6 kW system with 8 Trojan SIND 041245 batteries (71.0 kWh) and is completely off grid, lastly Cairns had a 13.0 kW system with 6 Trojan SIND 041245 batteries (53.3 kWh) and utilises feed-in tariffs. These results were filtered through the HOMER Pro® program and then subsequently the NREL SAM® program to apply realistic impacts on the efficiency of the system and to perform a full optimisation. All were performed using the Jinko Solar Eagle 60P (JMK260PP-60) panels, in which was optimised from the available solar panels throughout the process based on cost per kWh. The components analysed were 8 solar panels, 3 inverters and 10 batteries. The results suggest that even with modifications to the battery throughput and extending the lifetime, the best systems are those still connected to the grid. Additionally, taking advantage of solar credits available for the solar panels, can greatly reduce / offset the costs associated with buying a system with a battery system. Future work related to this topic can range from an analysis on the environmental impacts of replacing the components on a large scale, implementing alternative techniques like water cleaning the solar panels in which increases efficiency, obtaining an optimised system and testing for an extended period, obtaining actual load data to properly reflect realistic loads instead of a simulated load and as well additional analysis into azimuth angle and tilt angle for the solar panel arrays to determine if any further optimisation could be found. Finally, performing an additional optimisation after the RECs expire in 2030 would be vital as there wouldn’t be any solar credits available to offset the initial capital of the system

    Impact of Electric Vehicle Charging Strategy on the Long-Term Planning of an Isolated Microgrid

    Full text link
    [EN] Isolated microgrids, such as islands, rely on fossil fuels for electricity generation and include vehicle fleets, which poses significant environmental challenges. To address this, distributed energy resources based on renewable energy and electric vehicles (EVs) have been deployed in several places. However, they present operational and planning concerns. Hence, the aim of this paper is to propose a two-level microgrid problem. The first problem considers an EV charging strategy that minimizes charging costs and maximizes the renewable energy use. The second level evaluates the impact of this charging strategy on the power generation planning of Santa Cruz Island, Galapagos, Ecuador. This planning model is simulated in HOMER Energy. The results demonstrate the economic and environmental benefits of investing in additional photovoltaic (PV) generation and in the EV charging strategy. Investing in PV and smart charging for EVs could reduce the NPC by 13.58%, but a reduction in the NPC of the EV charging strategy would result in up to 3.12%.Clairand, J.; Álvarez, C.; Rodríguez-García, J.; Escrivá-Escrivá, G. (2020). Impact of Electric Vehicle Charging Strategy on the Long-Term Planning of an Isolated Microgrid. Energies. 13(13):1-18. https://doi.org/10.3390/en13133455S1181313Arriaga, M., Canizares, C. A., & Kazerani, M. (2013). Renewable Energy Alternatives for Remote Communities in Northern Ontario, Canada. IEEE Transactions on Sustainable Energy, 4(3), 661-670. doi:10.1109/tste.2012.2234154Eras-Almeida, A. A., & Egido-Aguilera, M. A. (2019). Hybrid renewable mini-grids on non-interconnected small islands: Review of case studies. Renewable and Sustainable Energy Reviews, 116, 109417. doi:10.1016/j.rser.2019.109417Mahmud, M. A. P., Huda, N., Farjana, S. H., & Lang, C. (2019). Techno-Economic Operation and Environmental Life-Cycle Assessment of a Solar PV-Driven Islanded Microgrid. IEEE Access, 7, 111828-111839. doi:10.1109/access.2019.2927653Huy, P. D., Ramachandaramurthy, V. K., Yong, J. Y., Tan, K. M., & Ekanayake, J. B. (2020). Optimal placement, sizing and power factor of distributed generation: A comprehensive study spanning from the planning stage to the operation stage. Energy, 195, 117011. doi:10.1016/j.energy.2020.117011Bahaj, A. S., & James, P. A. B. (2019). Electrical Minigrids for Development: Lessons From the Field. Proceedings of the IEEE, 107(9), 1967-1980. doi:10.1109/jproc.2019.2924594Nikmehr, N. (2020). Distributed robust operational optimization of networked microgrids embedded interconnected energy hubs. Energy, 199, 117440. doi:10.1016/j.energy.2020.117440Clement-Nyns, K., Haesen, E., & Driesen, J. (2010). The Impact of Charging Plug-In Hybrid Electric Vehicles on a Residential Distribution Grid. IEEE Transactions on Power Systems, 25(1), 371-380. doi:10.1109/tpwrs.2009.2036481Wang, G., Xu, Z., Wen, F., & Wong, K. P. (2013). Traffic-Constrained Multiobjective Planning of Electric-Vehicle Charging Stations. IEEE Transactions on Power Delivery, 28(4), 2363-2372. doi:10.1109/tpwrd.2013.2269142Rezaeimozafar, M., Eskandari, M., Amini, M. H., Moradi, M. H., & Siano, P. (2020). A Bi-Layer Multi-Objective Techno-Economical Optimization Model for Optimal Integration of Distributed Energy Resources into Smart/Micro Grids. Energies, 13(7), 1706. doi:10.3390/en13071706Clairand, J.-M., Rodr韌uez-Garc韆, J., & 羖varez-Bel, C. (2020). Assessment of Technical and Economic Impacts of EV User Behavior on EV Aggregator Smart Charging. Journal of Modern Power Systems and Clean Energy, 8(2), 356-366. doi:10.35833/mpce.2018.000840Yang, H., Pan, H., Luo, F., Qiu, J., Deng, Y., Lai, M., & Dong, Z. Y. (2017). Operational Planning of Electric Vehicles for Balancing Wind Power and Load Fluctuations in a Microgrid. IEEE Transactions on Sustainable Energy, 8(2), 592-604. doi:10.1109/tste.2016.2613941Savio, D. A., Juliet, V. A., Chokkalingam, B., Padmanaban, S., Holm-Nielsen, J. B., & Blaabjerg, F. (2019). Photovoltaic Integrated Hybrid Microgrid Structured Electric Vehicle Charging Station and Its Energy Management Approach. Energies, 12(1), 168. doi:10.3390/en12010168Jin, C., Sheng, X., & Ghosh, P. (2014). Optimized Electric Vehicle Charging With Intermittent Renewable Energy Sources. IEEE Journal of Selected Topics in Signal Processing, 8(6), 1063-1072. doi:10.1109/jstsp.2014.2336624Honarmand, M., Zakariazadeh, A., & Jadid, S. (2014). Integrated scheduling of renewable generation and electric vehicles parking lot in a smart microgrid. Energy Conversion and Management, 86, 745-755. doi:10.1016/j.enconman.2014.06.044Zhang, T., Chen, W., Han, Z., & Cao, Z. (2014). Charging Scheduling of Electric Vehicles With Local Renewable Energy Under Uncertain Electric Vehicle Arrival and Grid Power Price. IEEE Transactions on Vehicular Technology, 63(6), 2600-2612. doi:10.1109/tvt.2013.2295591Dhundhara, S., Verma, Y. P., & Williams, A. (2018). Techno-economic analysis of the lithium-ion and lead-acid battery in microgrid systems. Energy Conversion and Management, 177, 122-142. doi:10.1016/j.enconman.2018.09.030Kumar, A., Singh, A. R., Deng, Y., He, X., Kumar, P., & Bansal, R. C. (2018). Multiyear Load Growth Based Techno-Financial Evaluation of a Microgrid for an Academic Institution. IEEE Access, 6, 37533-37555. doi:10.1109/access.2018.2849411Abdin, Z., & Mérida, W. (2019). Hybrid energy systems for off-grid power supply and hydrogen production based on renewable energy: A techno-economic analysis. Energy Conversion and Management, 196, 1068-1079. doi:10.1016/j.enconman.2019.06.068Hafez, O., & Bhattacharya, K. (2012). Optimal planning and design of a renewable energy based supply system for microgrids. Renewable Energy, 45, 7-15. doi:10.1016/j.renene.2012.01.087Chade, D., Miklis, T., & Dvorak, D. (2015). Feasibility study of wind-to-hydrogen system for Arctic remote locations – Grimsey island case study. Renewable Energy, 76, 204-211. doi:10.1016/j.renene.2014.11.023Abo-Elyousr, F. K., & Elnozahy, A. (2018). Bi-objective economic feasibility of hybrid micro-grid systems with multiple fuel options for islanded areas in Egypt. Renewable Energy, 128, 37-56. doi:10.1016/j.renene.2018.05.066Das, I., & Canizares, C. A. (2019). Renewable Energy Integration in Diesel-Based Microgrids at the Canadian Arctic. Proceedings of the IEEE, 107(9), 1838-1856. doi:10.1109/jproc.2019.2932743Ayodele, E., Misra, S., Damasevicius, R., & Maskeliunas, R. (2019). Hybrid microgrid for microfinance institutions in rural areas – A field demonstration in West Africa. Sustainable Energy Technologies and Assessments, 35, 89-97. doi:10.1016/j.seta.2019.06.009Aziz, A. S., Tajuddin, M. F. N., Adzman, M. R., Mohammed, M. F., & Ramli, M. A. M. (2020). Feasibility analysis of grid-connected and islanded operation of a solar PV microgrid system: A case study of Iraq. Energy, 191, 116591. doi:10.1016/j.energy.2019.116591Elkadeem, M. R., Wang, S., Azmy, A. M., Atiya, E. G., Ullah, Z., & Sharshir, S. W. (2020). A systematic decision-making approach for planning and assessment of hybrid renewable energy-based microgrid with techno-economic optimization: A case study on an urban community in Egypt. Sustainable Cities and Society, 54, 102013. doi:10.1016/j.scs.2019.102013Jimenez Zabalaga, P., Cardozo, E., Choque Campero, L. A., & Araoz Ramos, J. A. (2020). Performance Analysis of a Stirling Engine Hybrid Power System. Energies, 13(4), 980. doi:10.3390/en13040980Masrur, H., Howlader, H. O. R., Elsayed Lotfy, M., Khan, K. R., Guerrero, J. M., & Senjyu, T. (2020). Analysis of Techno-Economic-Environmental Suitability of an Isolated Microgrid System Located in a Remote Island of Bangladesh. Sustainability, 12(7), 2880. doi:10.3390/su12072880Tuballa, M. L., & Abundo, M. L. (2018). Prospects of a solar-diesel-grid energy system for Silliman University, Dumaguete City, Philippines. International Journal of Green Energy, 15(12), 704-714. doi:10.1080/15435075.2018.1525555Adefarati, T., & Obikoya, G. . (2019). Techno-economic evaluation of a grid-connected microgrid system. International Journal of Green Energy, 16(15), 1497-1517. doi:10.1080/15435075.2019.1671421Donado, K., Navarro, L., Quintero M., C. G., & Pardo, M. (2019). HYRES: A Multi-Objective Optimization Tool for Proper Configuration of Renewable Hybrid Energy Systems. Energies, 13(1), 26. doi:10.3390/en13010026Lombardi, F., Riva, F., Sacchi, M., & Colombo, E. (2019). Enabling combined access to electricity and clean cooking with PV-microgrids: new evidences from a high-resolution model of cooking loads. Energy for Sustainable Development, 49, 78-88. doi:10.1016/j.esd.2019.01.005Fulhu, M., Mohamed, M., & Krumdieck, S. (2019). Voluntary demand participation (VDP) for security of essential energy activities in remote communities with case study in Maldives. Energy for Sustainable Development, 49, 27-38. doi:10.1016/j.esd.2019.01.002He, L., Zhang, S., Chen, Y., Ren, L., & Li, J. (2018). Techno-economic potential of a renewable energy-based microgrid system for a sustainable large-scale residential community in Beijing, China. Renewable and Sustainable Energy Reviews, 93, 631-641. doi:10.1016/j.rser.2018.05.053Veilleux, G., Potisat, T., Pezim, D., Ribback, C., Ling, J., Krysztofiński, A., … Chucherd, S. (2020). Techno-economic analysis of microgrid projects for rural electrification: A systematic approach to the redesign of Koh Jik off-grid case study. Energy for Sustainable Development, 54, 1-13. doi:10.1016/j.esd.2019.09.007Nnaji, E. C., Adgidzi, D., Dioha, M. O., Ewim, D. R. E., & Huan, Z. (2019). Modelling and management of smart microgrid for rural electrification in sub-saharan Africa: The case of Nigeria. The Electricity Journal, 32(10), 106672. doi:10.1016/j.tej.2019.106672Kovačević Markov, K., & Rajaković, N. (2019). Multi-energy microgrids with ecotourism purposes: The impact of the power market and the connection line. Energy Conversion and Management, 196, 1105-1112. doi:10.1016/j.enconman.2019.05.048Sarkar, T., Bhattacharjee, A., Samanta, H., Bhattacharya, K., & Saha, H. (2019). Optimal design and implementation of solar PV-wind-biogas-VRFB storage integrated smart hybrid microgrid for ensuring zero loss of power supply probability. Energy Conversion and Management, 191, 102-118. doi:10.1016/j.enconman.2019.04.025Clairand, J.-M., Arriaga, M., Canizares, C. A., & Alvarez-Bel, C. (2019). Power Generation Planning of Galapagos’ Microgrid Considering Electric Vehicles and Induction Stoves. IEEE Transactions on Sustainable Energy, 10(4), 1916-1926. doi:10.1109/tste.2018.2876059Hafez, O., & Bhattacharya, K. (2017). Optimal design of electric vehicle charging stations considering various energy resources. Renewable Energy, 107, 576-589. doi:10.1016/j.renene.2017.01.066Yoon, S.-G., & Kang, S.-G. (2017). Economic Microgrid Planning Algorithm with Electric Vehicle Charging Demands. Energies, 10(10), 1487. doi:10.3390/en10101487Eras-Almeida, A., Egido-Aguilera, M., Blechinger, P., Berendes, S., Caamaño, E., & García-Alcalde, E. (2020). Decarbonizing the Galapagos Islands: Techno-Economic Perspectives for the Hybrid Renewable Mini-Grid Baltra–Santa Cruz. Sustainability, 12(6), 2282. doi:10.3390/su12062282Clairand, J.-M., Rodríguez-García, J., & Álvarez-Bel, C. (2018). Electric Vehicle Charging Strategy for Isolated Systems with High Penetration of Renewable Generation. Energies, 11(11), 3188. doi:10.3390/en11113188Gamarra, C., & Guerrero, J. M. (2015). Computational optimization techniques applied to microgrids planning: A review. Renewable and Sustainable Energy Reviews, 48, 413-424. doi:10.1016/j.rser.2015.04.025HOMER Software https://www.homerenergy.com/Clairand Gómez, J. M. (s. f.). New strategies for the massive introduction of electric vehicles in the operation and planning of Smart Power Systems. doi:10.4995/thesis/10251/110971Pliego Tarifario Para Las Empresas Eléctricas. Technical Report https://www.cnelep.gob.ec/wp-content/uploads/2016/11/Pliego-Tarifarios-2016-Actualizado.pdfKhayatian, A., Barati, M., & Lim, G. J. (2018). Integrated Microgrid Expansion Planning in Electricity Market With Uncertainty. IEEE Transactions on Power Systems, 33(4), 3634-3643. doi:10.1109/tpwrs.2017.2768302Z Electric Vehicle: The Performance and Value Leader in Electric Vehicles https://zelectricvehicle.in/K9 Electric Transit Bus https://en.byd.com/wp-content/uploads/2019/07/4504-byd-transit-cut-sheets_k9-40_lr.pdfKia Soul EV https://www.kia.com/worldwide/vehicles/e-soul.doIluminando al Patrimonio Natural de la Humanidad. Technical Report http://www.elecgalapagos.com.ec/pdf2015/M09/Revistainstitucional.pdfProyecto Eólico San Cristóbal Galápagos—Ecuador. Technical Report https://www.slideserve.com/peggy/proyecto-e-lico-san-crist-bal-islas-gal-pagosPlan de Trabajo Anual—POA 2015. Technical Report http://www.elecgalapagos.com.ec/pdf2015/KO7/PlanOperativoAnual-POA.pdfSierra, J. C. (2016). Estimating road transport fuel consumption in Ecuador. Energy Policy, 92, 359-368. doi:10.1016/j.enpol.2016.02.008Registro Oficial. Technical Report 386 http://www.obraspublicas.gob.ec/wp-content/uploads/downloads/2012/09/SPTMF_resol_carga_gye-galapagos.pdfProyectos http://www.elecgalapagos.com.ec/proyectosPlan Galapagos. Technical Report http://extwprlegs1.fao.org/docs/pdf/ecu166016.pdfFicha Informativa de Proyecto 2016 Proyecto Fotovoltaico en la Isla Baltra—Archipiélago de Galápagos. Líder. Technical Report http://euroclimaplus.org/intranet/_documentos/repositorio/01Bienal%20ONUCambio%20Clim%C3%A1tico_2016Ecuador.pdfThe Wind Power. U57 https://www.thewindpower.net/turbine_media_en_460_unison_u57.phpSupporting the Energy Revolution https://www.vaisala.com/en/industries-innovation/renewablePerspectiva y Expansión del Sistema Eléctrico Ecuatoriano, Technical Report http://www.regulacionelectrica.gob.ec/plan-maestro-de-electrificacion-2013-2022

    An energy management system of campus microgrids:State-of-the-art and future challenges

    Get PDF
    The multiple uncertainties in a microgrid, such as limited photovoltaic generations, ups and downs in the market price, and controlling different loads, are challenging points in managing campus energy with multiple microgrid systems and are a hot topic of research in the current era. Microgrids deployed at multiple campuses can be successfully operated with an exemplary energy management system (EMS) to address these challenges, offering several solutions to minimize the greenhouse gas (GHG) emissions, maintenance costs, and peak load demands of the microgrid infrastructure. This literature survey presents a comparative analysis of multiple campus microgrids’ energy management at different universities in different locations, and it also studies different approaches to managing their peak demand and achieving the maximum output power for campus microgrids. In this paper, the analysis is also focused on managing and addressing the uncertain nature of renewable energies, considering the storage technologies implemented on various campuses. A comparative analysis was also considered for the energy management of campus microgrids, which were investigated with multiple optimization techniques, simulation tools, and different types of energy storage technologies. Finally, the challenges for future research are highlighted, considering campus microgrids’ importance globally. Moreover, this paper is expected to open innovative paths in the future for new researchers working in the domain of campus microgrids

    Micro Perspectives for Decentralized Energy Supply : Proceedings of the International Conference at Technische Universität Berlin, 7th-8th of April 2011

    Get PDF
    Zugleich gedruckt erschienen im Universitätsverlag der TU Berlin unter der ISBN 978-3-7983-2319-3.Diese Publikation enthält die eingereichten Veröffentlichungen für die Internationale Konferenz "Micro Perspektives for Decentralized Energy Supply" am 7. und 8. April 2011 an der Technischen Universität Berlin. Gedruckte Version im Universitätsverlag der TU Berlin (www.univerlag.tu-berlin.de) erschienen, ISBN 3-978-7983-2319-3This publication presents the papers of the International Conference "Micro Perspectives for Decentralized Energy Supply" on 7th and 8th of April, Technische Universität Berlin. Printed Version published by Universitätsverlag der TU Berlin (www.univerlag.tu-berlin.de), ISBN 978-3-7983-2319-

    Planning the integration of the renewable energy sources on islands, under the National Electric System in Mexico

    Get PDF
    The electric generation systems on islands are based generally on fossil fuel. This fact and its supply make the electricity cost higher than in systems used in the continent. In this thesis, as a first part, a review of the renewable energy generation systems on islands is elaborated. To do it, 77 islands from 45 different countries were analized. This analysis will allow to know how the implementation of renewable energy sources could help these islands in developing a renewable and sustainable energy sector, including a reduction of electricity generation cost. The de-carbonising in the electricity generation is necessary to reduce fossil fuel consumption, the pollution emitted and to meet the Energy Technology Perspectives 2ºC Scenario (2DS) targets. Small islands are not exempt from this target, so this the emphasis of this thesis is placed on a 50-50 target: to reduce the fossil fuel consumption through electricity generation from Renewable Energy Sources (RES) to cover 50% of all electric demand by 2050 on small islands. This analysis will be based on three factors: economical, technical, and land-use possibilities of integrating Renewable Energy Technologies (RETs) into the existing electrical grid. As second part of the thesis, this work shows the results from a study case of the application of renewable energy technology in Cozumel Island, Mexico. This island is located in the Riviera Maya, in the Occidental Caribbean Sea. The analysis developed was made through long- term statistical models. A deterministic methodology was used to perform time-series simulations. As a first integration approaching, the simulations show that for the year 2050 a feasible integration of a system based on wind/PV can be achieved on the Island, reducing the electricity price from 0.37 US/kWhto0.24US/kWh to 0.24 US/kWh (2050 in the Base Scenario). This result had a renewable penetration of 22.3% and does not considered a battery system or changes in the existing electric grid. With this scenario, the government will achieve its targets in renewable energy and in the reduction of the emissions of CO2. This will allow reaching a sustainable electricity sector. In a second approach, and according to the results, all systems proposed are able to completely satisfy the renewable electricity needed by 2050 in all scenarios proposed. From the 12 system proposals that were compared, two systems, System 2 and System 7, were chosen as eligible systems to be installed. The Levelized Cost of Energy (LCOE) result for System 2 was 0.2401 US/kWhandforSystem7was0.2008US/kWh and for System 7 was 0.2008 US/kWh by 2050 in the Base Scenario. Meanwhile, the Internal Rate of Return (IRR) value fluctuated from 17.6% for System 2 to 31% for System 7, with a renewable fraction of penetration for System 2 of 56.1% and for System 7 of 56.9% by 2050 in the Base Scenario. The selection of the best system was made on the base of a Dimensional Statistical Variable (DSV) through primary and secondary category rankings. The presented proposal of three phases methodology determines the best systems for capturing the lower initial capital cost and the higher competitiveness of this new proposal compared with the current system of electricity generation on the Island, and can be applied on small islands as well. As third part of this thesis, the analysis presents an optimization of the energy planning, a grid assessment, and an economic analysis, considering three growing scenarios (Low, Base and High) in the electricity consumption, to supply the energy demand for a hybrid power system (Photovoltaics/Wind/Diesel/Battery) on a small island by 2050.Los sistemas de generación en islas generalmente están basados en combustible fósil. Éste hecho y su suministro ocasionan que el costo de la electricidad sea mayor que en los sistemas continentales. En esta tesis y como primera parte, se elaboró una revisión de los sistemas de generación de electricidad en las islas. Para lograr esto, se analizaron 77 islas de 45 diferentes países. Éste análisis permitirá conocer cómo la implementación de las fuentes de energía renovable puede ayudar a éstas islas a desarrollar un sector sostenible y renovable, incluyendo la reducción del costo en la generación de electricidad. La des-carbonización en la generación de electricidad es necesaria para reducir el consumo de combustible fósil, para reducir la contaminación y para lograr los objetivos propuestos en el escenario de los 2 grados en la perspectiva de las tecnologías de la energía (2DS, por sus siglas en inglés). Las pequeñas islas no están exentas de éstos objetivos, por esto, el énfasis en ésta tesis está localizado en el objetivo 50-50: reducir el consumo de combustible fósil usado en la generación de electricidad a través de las fuentes de energía renovable (RES, por sus siglas en inglés), y así cubrir el 50% de la electricidad demandada por las pequeñas islas para el año 2050. Éste análisis estará basado en tres factores: en el económico, en el técnico y en las posibilidades del uso de la tierra para integrar las tecnologías de energía renovable (RETs, por sus siglas en inglés) en la red eléctrica existente. Como segunda parte de la tesis, en ésta se muestran los resultados de un caso de estudio en la aplicación de la tecnología de energía renovable en la isla de Cozumel, en México. Esta isla está localizada en la Riviera Maya, en el Mar Occidental del Caribe. El análisis desarrollado fue desarrollado a través de modelos estadísticos a largo plazo. Se ha usado una metodología determinística para realizar las simulaciones en las series de tiempo. Cómo un primer acercamiento para la integración, las simulaciones mostraron que se puede lograr para el 2050 una integración de un sistema basado en fuentes eólicas/fotovoltáicas en la isla, reduciendo el precio de la electricidad de 0.37 US/kWha0.24US/kWh a 0.24 US/kWh (en el escenario base para el año 2050). El resultado tuvo una penetración de la energía renovable de 22.3% sin considerar un sistema de baterías o cambios en la red eléctrica existente. En este escenario, el gobierno logrará sus objetivos en energía renovable y en la disminución de la emisión de CO2. Esto permitirá lograr un sector sostenible en la electricidad. En un segundo acercamiento y de acuerdo a los resultados, todos los sistemas propuestos pueden completamente satisfacer la electricidad renovable necesaria para el año 2050 en todos los escenarios propuestos. De los 12 sistemas propuestos que se compararon, dos sistemas, el Sistema 2 y el Sistema 7fueron elegidos como los sistemas para ser instalados. El resultado del costo nivelado de energía (LCOE, por sus siglas en inglés) para el Sistema 2 fue de 0.2401 US/kWhyparaelSistema7fueˊde0.2008US/kWh y para el Sistema 7 fué de 0.2008 US/kWh para el año 2050 en el escenario base. Mientras tanto, el valor de la tasa interna de retorno (IRR, por sus siglas en inglés) fluctuó del 17.6% para el Sistema 2 al 31% para el Sistema 7, con un factor de penetración en renovable para el Sistema 2 del 56.1% y para el Sistema 7 del 56.9% para el año 2050 en el escenario base. La selección del mejor sistema fue realizada sobre la base de una variable estadística dimensional (DSV, por sus siglas en inglés) a través de una clasificación de categorías primaria y secundaria. La presente propuesta de metodología de tres fases determina el mejor sistema para obtener el menor costo inicial de capital y la mayor competitividad de esta nueva propuesta, comparada con el actual sistema de generación de electricidad en la isla y que también pueda ser aplicada a las pequeñas islas. Como tercera parte de la tesis, el análisis presenta una optimización de la planeación energética, una evaluación de la red y un análisis económico, considerando tres escenarios de crecimiento (bajo, base y alto) para el consumo de electricidad y para suministrar la energía demandada por una isla pequeña para el año 2050. El principal objetivo de este estudio es, presentar una metodología de cuatro fases para optimizar y reducir el tiempo de respaldo del banco de baterías incluidas en el sistema híbrido de generación de energía seleccionado. También comparará cuatro diferentes tecnologías de baterías de manera simultánea, sin cambios en los objetivos planteados en 50% para el año 2050, y sin cambios en la operación segura y continua de la red. La metodología incluye un análisis de la red para obtener una segura, fuerte y confiable respuesta de operación basada en los parámetros indicados en el código de red, incluso en caso de disturbios eléctricos. En esta metodología de cuatro pasos, el análisis está desarrollado en base al uso de dos herramientas de modelos de simulación. La primera herramienta de modelos de simulación determina los valores óptimos de las variables controladas por el diseñador del sistema, tales como la mezcla de los componentes (fotovoltaico, eólico/diésel/baterías) que conformen el sistema, o la cantidad o tamaño de cada variable. Este modelo usa el análisis multi-año basado en corridas de simulación de tiempo-dominio a niveles de flujo de energía en paso de tiempo discretos de 1 hora. La segunda herramienta de simulación asume todas las variable y parámetros en la red como constantes durante el periodo de tiempo analizado. El flujo de potencia es analizado a través de un comando de función de conteo en un lenguaje de programación y refleja la respuesta del sistema en un tiempo específico, con unos parámetros y variables específicas dadas. La propuesta final técnica y su análisis financiero son obtenidos aplicando y validando esta metodología en una isla pequeña, así como también, la selección del sistema a ser instalado para la generación de electricidad renovable. Aquí se incluyen las modificaciones y refuerzos a la red eléctrica a través de los años hasta el año 2050, realizados de acuerdo con el código de red y con los objetivos en energía renovable indicados para el sistema eléctrico de potencia de la isla. De acuerdo a los resultados de esta optimización, el más bajo LCOE obtenido fue el del sistema que incluye las baterías de flujo Zinc-Bromine, en el cual las sensitividades fueron aplicadas y que fue de 0.2036 US/kWhparaelan~o2050enelEscenarioBase.Mientrasqueelvalordelatasainternaderetornoparaestesistemafuedel30.37ParaelcasodelPREanaˊlisisdecuandolaenergıˊarenovablesupleel100/kWh para el año 2050 en el Escenario Base. Mientras que el valor de la tasa interna de retorno para este sistema fue del 30.37%, con una fracción de penetración de las renovables del 59%. Los resultados de los análisis fueron sin considerar la tecnología eólica fuera de costa (Off-shore). Para el caso del PRE-análisis de cuando la energía renovable suple el 100% de la demanda de potencia, el menor LCOE obtenido incluyendo 8-3 MW turbinas eólicas Off-shore fué de 0.3006 US/kWh para el año 2050 en el Escenario Base. Estos resultados son combinando el eólico Off-shore/eólico On-shore/fotovoltaico/baterías Zn-Br/diésel, con un factor de penetración de las renovables del 100%

    Essays on Energy and Development in sub-Saharan Africa: Energy access, climate change, and the Nexus

    Get PDF
    La seguente Tesi di Dottorato si articola in cinque saggi che esaminano alcuni importanti aspetti legati all'energia in Africa subsahariana, e in particolare all'interazione tra lo sviluppo socio-economico e le sue implicazioni per l'ambiente a livello regionale e globale. I saggi sono introdotti da un capitolo di avvicinamento generale ai temi trattati. Questo capitolo prepara il lettore offrendo un riassunto delle principali sfide legate all'energia nel contesto subsariano e formulando le domande di ricerca e gli strumenti sui quali si basa la tesi stessa. Le principali implicazioni di ciascuno dei saggi, sia per la ricerca che per i decisori politici, vengono poi presentate in un capitolo di discussione finale. Il primo saggio esamina la problematica dell’accesso all'energia, e in particolare all'elettricità. Viene illustrato il ruolo dei dati satellitari e dell'analisi statistica dei dati geospaziali nel migliorare la comprensione della situazione dell'accesso all'elettricità in Africa subsahariana. Il saggio include un'analisi delle disuguaglianze che caratterizzano la qualità dell'accesso all'elettricità nella regione. Il risultato principale è che, dopo decenni, la disuguaglianza nell'accesso all'energia sta iniziando a diminuire. Essa rimane però prominente, in particolare per quanto riguarda la quantità di energia consumata. Viene stimato che gli sforzi di elettrificazione tra il 2020 e il 2030 debbano triplicare il loro passo per raggiungere l'obiettivo di sviluppo sostenibile SDG 7.1.1. Il secondo saggio consiste di una piattaforma di valutazione della domanda energetica bottom-up spazialmente esplicita per stimare il fabbisogno energetico tra le comunità in cui l'accesso all'elettricità è attualmente carente, come identificato con la metodologia introdotta nel primo saggio. La valutazione non si limita al fabbisogno energetico residenziale, ma include un resoconto dettagliato, basato sugli usi finali, del fabbisogno energetico di scuole, strutture sanitarie, pompaggio dell'acqua per l'irrigazione, lavorazione delle colture e microimprese, i principali motori dello sviluppo rurale. Viene condotto uno studio nazionale per il Kenya per dimostrare l'importanza di considerare molteplici fonti di domanda oltre al residenziale quando l'obiettivo è sviluppare una strategia di elettrificazione che supperisca veramente alla povertà energetica. Si dimostra poi che esiste un notevole potenziale di crescita della produttività e della redditività rurale grazie all'apporto di energia elettrica. In molte aree, questi profitti locali potrebbero ripagare gli investimenti nelle infrastrutture di elettrificazione in pochi anni. Il terzo saggio analizza un aspetto specifico dell'interazione tra pianificazione dell'accesso all'elettricità, domanda di energia residenziale e adattamento ai cambiamenti climatici. Vengono combinati dati e scenari climatici, satellitari e demografici per produrre una stima globale spazialmente esplicita della domanda di circolazione e condizionamento dell’aria non soddisfatta a causa della mancanza di accesso all'elettricità. Sulla base di modelli integrati di elettrificazione climatica-energetica e geospaziale, risulta che in Africa sub-sahariana, l'hotspot globale della povertà energetica, tenere conto del fabbisogno di circolazione e condizionamento dell’aria locale stimato (in aggiunta agli obiettivi di consumo residenziale di base) determini una riduzione sostanziale della quota di sistemi standalone come l'opzione di elettrificazione meno costosa entro il 2030, e un importante aumento della capacità di generazione di elettricità e dei requisiti di investimento. Tali risultati suggeriscono la necessità di una maggiore considerazione delle esigenze di adattamento climatico nella pianificazione dei sistemi energetici dei paesi in via di sviluppo e nella valutazione del trade-off tra l'espansione della rete elettrica centrale e sistemi decentralizzati per raggiungere un’elettrificazione universale. La pianificazione dell'elettrificazione deve essere tecnicamente efficiente, ma deve anche considerare l'ambiente politico-economico in cui gli investimenti vengono canalizzati. Il quarto saggio valuta il ruolo della governance e della qualità regolatoria nel quadro di modellazione dell'accesso all'energia elettrica. In particolare, si introduce un indice di governance dell'accesso all'elettricità basato su più indicatori che viene poi implementato nel modello di elettrificazione IMAGE-TIMER. L’effetto dell’indice viene modellato attraverso il suo effetto modificatore sui tassi di sconto privati (una misura del rischio e della disponibilità ad accettare costi futuri rispetto ai costi attuali). I risultati mostrano che la governance e la qualità regolatoria nell'accesso all'elettricità hanno un impatto significativo sul mix tecnologico ottimale e sui flussi di investimenti privati per raggiungere l'elettrificazione universale in Africa subsahariana. In particolare, un ambiente rischioso scoraggia l’investimento da parte dei fornitori privati di soluzioni di accesso decentralizzato all'energia, con il rischio di lasciare molti senza elettricità anche oltre il 2030. Il quinto e ultimo saggio analizza il settore energetico africano da un punto di vista ‘Nexus’. Il saggio valuta l'affidabilità del sistema energetico nei sistemi energetici dominati dall'energia idroelettrica (come in molti paesi dell'Africa centrale e orientale) e del ruolo che i cambiamenti climatici e gli eventi estremi possono esercitare su di esso. Il lavoro combina analisi qualitative e quantitative per (i) proporre un solido framework per evidenziare le interdipendenze tra energia idroelettrica, disponibilità di acqua e cambiamento climatico, (ii) analizzare sistematicamente lo stato dell'arte sugli impatti previsti dei cambiamenti climatici su l'energia idroelettrica nell'Africa subsahariana e (iii) fornire evidenza empirica sui trend passati e sulle traiettorie di sviluppo futuro del settore. I risultati suggeriscono che il cambiamento climatico influenzerà l'affidabilità e la sicurezza della fornitura elettrica attraverso diversi canali. Ad esempio, molti dei principali bacini idrologici sono stati caratterizzati da una diminuzione del livello idrico nel corso del ventesimo secolo. Si evidenzia come tuttavia una diversificazione del mix di generazione elettrico sia finora stata promossa solo in un numero limitato di paesi. Si suggerisce infine che l'integrazione delle fonti rinnovabili variabili con l'energia idroelettrica possa aumentare la resilienza del sistema.This dissertation is a collection of five essays examining some important energy-related aspects at the interplay of sub-Saharan Africa (SSA)’s development and its interactions with the regional and global environment. The essays are introduced by a general overview chapter – highlighting the core energy-related challenges of SSA and the scope of this work. The main implications of the essays, both for research and for policymakers, are then considered in the final discussion chapter. The first essay focuses on access to modern energy, and chiefly on electricity. I illustrate the role of satellite data and the statistical analysis of geospatial data in improving the understanding of the electricity access situation in sub-Saharan Africa. The essay includes an analysis of inequality characterising the electricity access quality in the region. The main finding is that after decades, energy access inequality is beginning to decline but it remains prominent in particular as far as the quantity consumed is concerned. I find that electrification efforts between 2020 and 2030 must triplicate their pace to meet Sustainable Development Goal 7.1.1. The second essay develops a spatially-explicit bottom-up energy demand assessment platform to estimate the energy needs among communities where access to electricity is currently lacking, as identified with the methodology introduced in the first essay. The assessment is not restricted to residential energy needs, but it includes a detailed, appliance-based account of power needs for schools, healthcare facilities, water pumping for irrigation, crop processing, and micro enterprises, the key drivers of rural development. I carry out a country-study for Kenya to show the importance of considering multiple demand sources beyond residential when the aim is developing an electrification strategy which truly overcomes energy poverty. I also show that there is considerable potential for rural productivity and profitability growth thanks to the input of electric energy. In many areas, these local profits might pay back the electrification infrastructure investment in only few years. The third essay analyses a specific aspect at the interplay between electricity access planning, household energy demand and climate change adaptation. I combine climate, satellite, and demographic data and scenarios to produce a global spatially-explicit estimate of unmet ACC demand due to the lack of electricity access. Based on integrated climate-energy and geospatial electrification modelling, I find that in sub-Saharan Africa, the global hotspot of energy poverty, accounting for the estimated local ACC needs on top of baseline residential consumption targets determines a substantial reduction in the share of decentralised systems as the least-cost electrification option by 2030, and a major ramp-up in the power generation capacity and investment requirements. My results call for a greater consideration of climate adaptation needs in the planning of energy systems of developing countries and in evaluating the trade-off between the central power grid expansion and decentralised systems to achieve universal electrification. Electrification planning must be techno-economically efficient, but it must also consider the political-economic environment where investment needs to be channelled. The fourth essay evaluates the role of governance and regulatory quality in the electricity access modelling framework. In particular, I introduce an Electricity Access Governance Index based on multiple indicators implement it into the PBL’s IMAGE-TIMER electrification model through its modifier effect on private discount rates (a measure of risk and willingness to accept future costs vis-à-vis present costs). The results show that governance and regulatory quality in electricity access have a significant impact on the optimal technological mix and the private investment flows for reaching universal electrification in sub-Saharan Africa. In particular, risky environment crowd out private providers of decentralised energy access solutions with the risk of leaving many without electricity even after 2030. The fifth and final essay takes a nexus perspective in the analysis of the African power sector. It deals with the reliability of the energy system in hydropower-dominated power systems (such as in many countries in Central and East Africa) and the role that climate change and extreme events can exert on it. The essay combines qualitative and quantitative analysis to (i) propose a robust framework to highlight the interdependencies between hydropower, water availability, and climate change, (ii) systematically review the state-of-the art literature on the projected impacts of climate change on hydropower in sub-Saharan Africa, and (iii) provide supporting evidence on past trends and current pathways of power mix diversification, drought incidence, and climate change projections. I find that climate change can affect supply reliability and security in multiple ways. For instance, several major river basins have been drying throughout the twentieth century. Nonetheless, I highlight that diversification has hitherto only been promoted in a limited number of countries. I suggest how integrating variable renewables and hydropower can increase system resilience
    corecore