18 research outputs found

    Light field image processing: an overview

    Get PDF
    Light field imaging has emerged as a technology allowing to capture richer visual information from our world. As opposed to traditional photography, which captures a 2D projection of the light in the scene integrating the angular domain, light fields collect radiance from rays in all directions, demultiplexing the angular information lost in conventional photography. On the one hand, this higher dimensional representation of visual data offers powerful capabilities for scene understanding, and substantially improves the performance of traditional computer vision problems such as depth sensing, post-capture refocusing, segmentation, video stabilization, material classification, etc. On the other hand, the high-dimensionality of light fields also brings up new challenges in terms of data capture, data compression, content editing, and display. Taking these two elements together, research in light field image processing has become increasingly popular in the computer vision, computer graphics, and signal processing communities. In this paper, we present a comprehensive overview and discussion of research in this field over the past 20 years. We focus on all aspects of light field image processing, including basic light field representation and theory, acquisition, super-resolution, depth estimation, compression, editing, processing algorithms for light field display, and computer vision applications of light field data

    Perceptually Optimized Visualization on Autostereoscopic 3D Displays

    Get PDF
    The family of displays, which aims to visualize a 3D scene with realistic depth, are known as "3D displays". Due to technical limitations and design decisions, such displays create visible distortions, which are interpreted by the human vision as artefacts. In absence of visual reference (e.g. the original scene is not available for comparison) one can improve the perceived quality of the representations by making the distortions less visible. This thesis proposes a number of signal processing techniques for decreasing the visibility of artefacts on 3D displays. The visual perception of depth is discussed, and the properties (depth cues) of a scene which the brain uses for assessing an image in 3D are identified. Following the physiology of vision, a taxonomy of 3D artefacts is proposed. The taxonomy classifies the artefacts based on their origin and on the way they are interpreted by the human visual system. The principles of operation of the most popular types of 3D displays are explained. Based on the display operation principles, 3D displays are modelled as a signal processing channel. The model is used to explain the process of introducing distortions. It also allows one to identify which optical properties of a display are most relevant to the creation of artefacts. A set of optical properties for dual-view and multiview 3D displays are identified, and a methodology for measuring them is introduced. The measurement methodology allows one to derive the angular visibility and crosstalk of each display element without the need for precision measurement equipment. Based on the measurements, a methodology for creating a quality profile of 3D displays is proposed. The quality profile can be either simulated using the angular brightness function or directly measured from a series of photographs. A comparative study introducing the measurement results on the visual quality and position of the sweet-spots of eleven 3D displays of different types is presented. Knowing the sweet-spot position and the quality profile allows for easy comparison between 3D displays. The shape and size of the passband allows depth and textures of a 3D content to be optimized for a given 3D display. Based on knowledge of 3D artefact visibility and an understanding of distortions introduced by 3D displays, a number of signal processing techniques for artefact mitigation are created. A methodology for creating anti-aliasing filters for 3D displays is proposed. For multiview displays, the methodology is extended towards so-called passband optimization which addresses Moiré, fixed-pattern-noise and ghosting artefacts, which are characteristic for such displays. Additionally, design of tuneable anti-aliasing filters is presented, along with a framework which allows the user to select the so-called 3d sharpness parameter according to his or her preferences. Finally, a set of real-time algorithms for view-point-based optimization are presented. These algorithms require active user-tracking, which is implemented as a combination of face and eye-tracking. Once the observer position is known, the image on a stereoscopic display is optimised for the derived observation angle and distance. For multiview displays, the combination of precise light re-direction and less-precise face-tracking is used for extending the head parallax. For some user-tracking algorithms, implementation details are given, regarding execution of the algorithm on a mobile device or on desktop computer with graphical accelerator

    A comprehensive framework for visual quality assessment of light field tensor displays

    Get PDF
    In recent years, light field technology has attracted the interest of academia and industry, thanks to the possibility of rendering 3D scenes in a more realistic and immersive way. In particular, light field displays have been consistently investigated for their ability to offer a glass-free 3D viewing experience. Among others, tensor displays represent a promising way to render light field contents. However, only a few prototypes of such type of displays have been implemented and are available to the scientific community. As a direct consequence, the visual quality of such displays has not been rigorously investigated. In this paper, we propose a new framework to assess the visual quality of light field tensor displays on conventional 2D screens. The multilayer components of the tensor displays are virtually rendered on a typical 2D monitor through the use of a GUI, and different viewing angles can be accessed by simple mouse interactions. Both single and double stimulus methodologies for subjective quality assessment of light field contents are supported in this framework, while the total time of interaction is recorded for every stimulus. Results obtained in two different laboratory settings demonstrate that the framework can be successfully used to perform subjective quality assessment of different compression solutions for light field tensor displays

    Multi-user interface for co-located real-time work with digital mock-up: a way to foster collaboration?

    Get PDF
    Nowadays more and more industrial design activities adopt the strategy of Concurrent Engineering (CE), which changes the way to carry out all the activities along the product’s lifecycle from sequential to parallel. Various experts of different activities produce technical data using domain-specific software. To augment the interoperability among the technical data, a Digital Mock-Up (DMU), or a Building Information Model (BIM) in architectural engineering can be used. Through an appropriate Computer–Human Interface (CHI), each expert has his/her own point-of-view (POV) of a specific representation of DMU’s technical data according to an involved domain. When multiple experts work collaboratively in the same place and at the same time, the number of CHIs is also multiplied by the number of experts. Instead of multiple CHIs, therefore, a unique CHI should be developed to support the multiview and multi-interaction collaborative works. Our contributions in this paper are (a) a concept of a CHI system with multi-view and multi-interaction of DMU for multiple users in collaborative design; (b) a state of the art of multi-view and multi-interaction metaphors; (c) an experiment to evaluate a collaborative application using multi-view CHI. The experimental results indicate that, in multi-view CHI working condition, users are more efficient than in the other two working conditions (multiple CHIs and split view CHI). Moreover, in multi-view CHI working condition, the user, who is helping the other, takes less mutual awareness of where the other collaborator works than the other two working conditions.Bourse de thèse de CSC (China Scholarship Council

    Autostereoscopy and Motion Parallax for Mobile Computer Games Using Commercially Available Hardware

    Get PDF
    Abstract: In this paper we present a solution for the three dimensional representation of mobile computer games which includes both motion parallax and an autostereoscopic display. The system was built on hardware which is available on the consumer market: an iPhone 3G with a Wazabee 3Dee Shell, which is an autostereoscopic extension for the iPhone. The motion sensor of the phone was used for the implementation of the motion parallax effect as well as for a tilt compensation for the autostereoscopic display. This system was evaluated in a limited user study on mobile 3D displays. Despite some obstacles that needed to be overcome and a few remaining shortcomings of the final system, an overall acceptable 3D experience could be reached. That leads to the conclusion that portable systems for the consumer market which include 3D displays are within reach

    Real-time GPU-accelerated Out-of-Core Rendering and Light-field Display Visualization for Improved Massive Volume Understanding

    Get PDF
    Nowadays huge digital models are becoming increasingly available for a number of different applications ranging from CAD, industrial design to medicine and natural sciences. Particularly, in the field of medicine, data acquisition devices such as MRI or CT scanners routinely produce huge volumetric datasets. Currently, these datasets can easily reach dimensions of 1024^3 voxels and datasets larger than that are not uncommon. This thesis focuses on efficient methods for the interactive exploration of such large volumes using direct volume visualization techniques on commodity platforms. To reach this goal specialized multi-resolution structures and algorithms, which are able to directly render volumes of potentially unlimited size are introduced. The developed techniques are output sensitive and their rendering costs depend only on the complexity of the generated images and not on the complexity of the input datasets. The advanced characteristics of modern GPGPU architectures are exploited and combined with an out-of-core framework in order to provide a more flexible, scalable and efficient implementation of these algorithms and data structures on single GPUs and GPU clusters. To improve visual perception and understanding, the use of novel 3D display technology based on a light-field approach is introduced. This kind of device allows multiple naked-eye users to perceive virtual objects floating inside the display workspace, exploiting the stereo and horizontal parallax. A set of specialized and interactive illustrative techniques capable of providing different contextual information in different areas of the display, as well as an out-of-core CUDA based ray-casting engine with a number of improvements over current GPU volume ray-casters are both reported. The possibilities of the system are demonstrated by the multi-user interactive exploration of 64-GVoxel datasets on a 35-MPixel light-field display driven by a cluster of PCs. ------------------------------------------------------------------------------------------------------ Negli ultimi anni si sta verificando una proliferazione sempre più consistente di modelli digitali di notevoli dimensioni in campi applicativi che variano dal CAD e la progettazione industriale alla medicina e le scienze naturali. In modo particolare, nel settore della medicina, le apparecchiature di acquisizione dei dati come RM o TAC producono comunemente dei dataset volumetrici di grosse dimensioni. Questi dataset possono facilmente raggiungere taglie dell’ordine di 10243 voxels e dataset di dimensioni maggiori possono essere frequenti. Questa tesi si focalizza su metodi efficienti per l’esplorazione di tali grossi volumi utilizzando tecniche di visualizzazione diretta su piattaforme HW di diffusione di massa. Per raggiungere tale obiettivo si introducono strutture specializzate multi-risoluzione e algoritmi in grado di visualizzare volumi di dimensioni potenzialmente infinite. Le tecniche sviluppate sono “ouput sensitive” e la loro complessità di rendering dipende soltanto dalle dimensioni delle immagini generate e non dalle dimensioni dei dataset di input. Le caratteristiche avanzate delle architetture moderne GPGPU vengono inoltre sfruttate e combinate con un framework “out-of-core” in modo da offrire una implementazione di questi algoritmi e strutture dati più flessibile, scalabile ed efficiente su singole GPU o cluster di GPU. Per migliorare la percezione visiva e la comprensione dei dati, viene introdotto inoltre l’uso di tecnologie di display 3D di nuova generazione basate su un approccio di tipo light-field. Questi tipi di dispositivi consentono a diversi utenti di percepire ad occhio nudo oggetti che galleggiano all’interno dello spazio di lavoro del display, sfruttando lo stereo e la parallasse orizzontale. Si descrivono infine un insieme di tecniche illustrative interattive in grado di fornire diverse informazioni contestuali in diverse zone del display, così come un motore di “ray-casting out-of-core” basato su CUDA e contenente una serie di miglioramenti rispetto agli attuali metodi GPU di “ray-casting” di volumi. Le possibilità del sistema sono dimostrate attraverso l’esplorazione interattiva di dataset di 64-GVoxel su un display di tipo light-field da 35-MPixel pilotato da un cluster di PC

    Fourteenth Biennial Status Report: März 2017 - February 2019

    No full text

    Situated Displays in Telecommunication

    Get PDF
    In face to face conversation, numerous cues of attention, eye contact, and gaze direction provide important channels of information. These channels create cues that include turn taking, establish a sense of engagement, and indicate the focus of conversation. However, some subtleties of gaze can be lost in common videoconferencing systems, because the single perspective view of the camera doesn't preserve the spatial characteristics of the face to face situation. In particular, in group conferencing, the `Mona Lisa effect' makes all observers feel that they are looked at when the remote participant looks at the camera. In this thesis, we present designs and evaluations of four novel situated teleconferencing systems, which aim to improve the teleconferencing experience. Firstly, we demonstrate the effectiveness of a spherical video telepresence system in that it allows a single observer at multiple viewpoints to accurately judge where the remote user is placing their gaze. Secondly, we demonstrate the gaze-preserving capability of a cylindrical video telepresence system, but for multiple observers at multiple viewpoints. Thirdly, we demonstrated the further improvement of a random hole autostereoscopic multiview telepresence system in conveying gaze by adding stereoscopic cues. Lastly, we investigate the influence of display type and viewing angle on how people place their trust during avatar-mediated interaction. The results show the spherical avatar telepresence system has the ability to be viewed qualitatively similarly from all angles and demonstrate how trust can be altered depending on how one views the avatar. Together these demonstrations motivate the further study of novel display configurations and suggest parameters for the design of future teleconferencing systems

    Thirteenth Biennial Status Report: April 2015 - February 2017

    No full text
    corecore