1,892 research outputs found

    Multiview real-time media distribution for next generation networks

    Get PDF
    With the massive deployment of broadband access to the end-users, the continuous improvement of the hardware capabilities of end devices and better video compression techniques, acceptable conditions have been met to unleash over-the-top bandwidth demanding and time-stringent P2P applications, such as multiview real-time media distribution. Such applications enable the transmission of multiple views of the same scene, providing consumers with a more immersive visual experience. This article proposes an architecture to distribute multiview real-time media content using a hybrid DVB-T2, client-server and P2P paradigms, supported by an also novel QoS solution. The approach minimizes packet delay, interar- rival jitter, inter-ISP traffic and traffic at the ISP core network, which are some of the main drawbacks of P2P networks, whilst still meeting stringent QoS demands. The proposed architecture uses DVB-T2 to distribute a self-contained and fully decodable base-layer video signal, assumed to be always available to the end-user, and an IP network to distribute in parallel - with increased delay - additional IP video streams. The result is a decoded video quality that adapts to individual end-user conditions and maxi- mizes viewing experience. To achieve its target goal this architecture: defines new services for the ISP’s services network and new roles for the ISP core, edge and border routers; makes use of pure IP mul- ticast transmission at the ISP’s core network, greatly minimizing bandwidth consumption; constructs a geographically contained P2P network that uses P2P application-level multicast trees to assist the dis- tribution of the IP video streams at the ISP access networks, greatly reducing inter-ISP traffic, and; de- scribes a novel QoS control architecture that takes advantage of the Internet resource over-provisioning techniques to meet stringent QoS demands in a scalable manner. The proposed architecture has been im- plemented in both real test bed implementation and ns-2 simulations. Results have shown a highly scal- able P2P overlay construction algorithm, with very fast computation of application-level multicast trees (in the order of milliseconds), and efficient reaction to peer-churn with no perceptually annoying impair- ments noticed. Furthermore, enormous bandwidth savings are achieved at the ISP core network, which considerable lower management and investment costs in infrastructure. The QoS based results have also shown that the proposed approach effectively deploys a fast and scalable resource and admission control mechanism, considerably lowering signalling events using a per-class over-provisioning approach thus preventing per-flow QoS reservation signalling messages. Moreover, it is aware of network link resources in real-time and supports for service differentiation and network convergence by guaranteeing that each admitted traffic flow receives the contracted QoS. Finally, the proposed architecture for Multiview Real- Time Media Distribution for Next Generation Networks, as a component for a large project demonstrator, has been evaluated by an independent panel of experts following ITU recommendations, obtaining an excellent evaluation as computed by Mean Opinion Score.info:eu-repo/semantics/publishedVersio

    Advanced Free Viewpoint Video Streaming Techniques

    Get PDF
    Free-viewpoint video is a new type of interactive multimedia service allowing users to control their viewpoint and generate new views of a dynamic scene from any perspective. The uniquely generated and displayed views are composed from two or more high bitrate camera streams that must be delivered to the users depending on their continuously changing perspective. Due to significant network and computational resource requirements, we proposed scalable viewpoint generation and delivery schemes based on multicast forwarding and distributed approach. Our aim was to find the optimal deployment locations of the distributed viewpoint synthesis processes in the network topology by allowing network nodes to act as proxy servers with caching and viewpoint synthesis functionalities. Moreover, a predictive multicast group management scheme was introduced in order to provide all camera views that may be requested in the near future and prevent the viewpoint synthesizer algorithm from remaining without camera streams. The obtained results showed that even 42% traffic decrease can be realized using distributed viewpoint synthesis and the probability of viewpoint synthesis starvation can be also significantly reduced in future free viewpoint video services

    Multi-View Video Packet Scheduling

    Full text link
    In multiview applications, multiple cameras acquire the same scene from different viewpoints and generally produce correlated video streams. This results in large amounts of highly redundant data. In order to save resources, it is critical to handle properly this correlation during encoding and transmission of the multiview data. In this work, we propose a correlation-aware packet scheduling algorithm for multi-camera networks, where information from all cameras are transmitted over a bottleneck channel to clients that reconstruct the multiview images. The scheduling algorithm relies on a new rate-distortion model that captures the importance of each view in the scene reconstruction. We propose a problem formulation for the optimization of the packet scheduling policies, which adapt to variations in the scene content. Then, we design a low complexity scheduling algorithm based on a trellis search that selects the subset of candidate packets to be transmitted towards effective multiview reconstruction at clients. Extensive simulation results confirm the gain of our scheduling algorithm when inter-source correlation information is used in the scheduler, compared to scheduling policies with no information about the correlation or non-adaptive scheduling policies. We finally show that increasing the optimization horizon in the packet scheduling algorithm improves the transmission performance, especially in scenarios where the level of correlation rapidly varies with time

    Dünaamiline kiiruse jaotamine interaktiivses mitmevaatelises video vaatevahetuse ennustamineses

    Get PDF
    In Interactive Multi-View Video (IMVV), the video has been captured by numbers of cameras positioned in array and transmitted those camera views to users. The user can interact with the transmitted video content by choosing viewpoints (views from different cameras in the array) with the expectation of minimum transmission delay while changing among various views. View switching delay is one of the primary concern that is dealt in this thesis work, where the contribution is to minimize the transmission delay of new view switch frame through a novel process of selection of the predicted view and compression considering the transmission efficiency. Mainly considered a realtime IMVV streaming, and the view switch is mapped as discrete Markov chain, where the transition probability is derived using Zipf distribution, which provides information regarding view switch prediction. To eliminate Round-Trip Time (RTT) transmission delay, Quantization Parameters (QP) are adaptively allocated to the remaining redundant transmitted frames to maintain view switching time minimum, trading off with the quality of the video till RTT time-span. The experimental results of the proposed method show superior performance on PSNR and view switching delay for better viewing quality over the existing methods

    Layer-Aware Forward Error Correction for Mobile Broadcast of Layered Media

    Full text link
    The bitstream structure of layered media formats such as scalable video coding (SVC) or multiview video coding (MVC) opens up new opportunities for their distribution in Mobile TV services. Features like graceful degradation or the support of the 3-D experience in a backwards-compatible way are enabled. The reason is that parts of the media stream are more important than others with each part itself providing a useful media representation. Typically, the decoding of some parts of the bitstream is only possible, if the corresponding more important parts are correctly received. Hence, unequal error protection (UEP) can be applied protecting important parts of the bitstream more strongly than others. Mobile broadcast systems typically apply forward error correction (FEC) on upper layers to cope with transmission errors, which the physical layer FEC cannot correct. Today's FEC solutions are optimized to transmit single layer video. The exploitation of the dependencies in layered media codecs for UEP using FEC is the subject of this paper. The presented scheme, which is called layer-aware FEC (LA-FEC), incorporates the dependencies of the layered video codec into the FEC code construction. A combinatorial analysis is derived to show the potential theoretical gain in terms of FEC decoding probability and video quality. Furthermore, the implementation of LA-FEC as an extension of the Raptor FEC and the related signaling are described. The performance of layer-aware Raptor code with SVC is shown by experimental results in a DVB-H environment showing significant improvements achieved by LA-FEC. © 2011 IEEE.Hellge, C.; Gómez Barquero, D.; Schierl, T.; Wiegand, T. (2011). Layer-Aware Forward Error Correction for Mobile Broadcast of Layered Media. IEEE Transactions on Multimedia. 13(3):551-562. doi:10.1109/TMM.2011.2129499S55156213
    corecore